Publications by authors named "Chih-Yuan Yao"

Background: Controlling saturated fat and cholesterol intake is important for the prevention of cardiovascular diseases. Although the use of mobile diet-tracking apps has been increasing, the reliability of nutrition apps in tracking saturated fats and cholesterol across different nations remains underexplored.

Objective: This study aimed to examine the reliability and consistency of nutrition apps focusing on saturated fat and cholesterol intake across different national contexts.

View Article and Find Full Text PDF

Objective: Mobile nutrition applications (apps) provide a simple way for individuals to record their diet, but the validity and inherent errors need to be carefully evaluated. The aim of this study was to assess the validity and clarify the sources of measurement errors of image-assisted mobile nutrition apps.

Methods: This was a cross-sectional study with 98 students recruited from School of Nutrition and Health Sciences, Taipei Medical University.

View Article and Find Full Text PDF

Background and aims: Digital food viewing is a vital skill for connecting dieticians to e-health. The aim of this study was to integrate a novel pedagogical framework that combines interactive three- (3-D) and two-dimensional (2-D) food models into a formal dietetic training course. The level of agreement between the digital food models (first semester) and the effectiveness of educational integration of digital food models during the school closure due to coronavirus disease 2019 (COVID-19) (second semester) were evaluated.

View Article and Find Full Text PDF

The use of image-based dietary assessments (IBDAs) has rapidly increased; however, there is no formalized training program to enhance the digital viewing skills of dieticians. An IBDA was integrated into a nutritional practicum course in the School of Nutrition and Health Sciences, Taipei Medical University Taiwan. An online IBDA platform was created as an off-campus remedial teaching tool to reinforce the conceptualization of food portion sizes.

View Article and Find Full Text PDF

Periodontal diagnosis requires discovery of the relations among teeth, gingiva (i.e., gums), and alveolar bones, but alveolar bones are inside gingiva and not visible for inspection.

View Article and Find Full Text PDF

Digital dental reconstruction can be a more efficient and effective mechanism for artificial crown construction and period inspection. However, optical methods cannot reconstruct those portions under gums, and X-ray-based methods have high radiation to limit their applied frequency. Optical coherence tomography (OCT) can harmlessly penetrate gums using low-coherence infrared rays, and thus, this work designs an OCT-based framework for dental reconstruction using optical rectification, fast Fourier transform, volumetric boundary detection, and Poisson surface reconstruction to overcome noisy imaging.

View Article and Find Full Text PDF

Depth has been a valuable piece of information for perception tasks such as robot grasping, obstacle avoidance, and navigation, which are essential tasks for developing smart homes and smart cities. However, not all applications have the luxury of using depth sensors or multiple cameras to obtain depth information. In this paper, we tackle the problem of estimating the per-pixel depths from a single image.

View Article and Find Full Text PDF

This paper presents a novel algorithm to generate micrography QR codes, a novel machine-readable graphic generated by embedding a QR code within a micrography image. The unique structure of micrography makes it incompatible with existing methods used to combine QR codes with natural or halftone images. We exploited the high-frequency nature of micrography in the design of a novel deformation model that enables the skillful warping of individual letters and adjustment of font weights to enable the embedding of a QR code within a micrography.

View Article and Find Full Text PDF

Introducing motion into existing static paintings is becoming a field that is gaining momentum. This effort facilitates keeping artworks current and translating them to different forms for diverse audiences. Chinese ink paintings and Japanese Sumies are well recognized in Western cultures, yet not easily practiced due to the years of training required.

View Article and Find Full Text PDF

Manga are a popular artistic form around the world, and artists use simple line drawing and screentone to create all kinds of interesting productions. Vectorization is helpful to digitally reproduce these elements for proper content and intention delivery on electronic devices. Therefore, this study aims at transforming scanned Manga to a vector representation for interactive manipulation and real-time rendering with arbitrary resolution.

View Article and Find Full Text PDF

Low-efficiency diffusion mechanism poses a significant barrier to the enhancement of micromixing efficiency in microfluidics. Actuating artificial cilia to increase the contact area of two flow streams during micromixing provides a promising alternative to enhance the mixing performance. Real-time adjustment of beating behavior in artificial cilia is necessary to accommodate various biological/chemical reagents with different hydrodynamic properties that are processed in a single microfluidic platform during micromixing.

View Article and Find Full Text PDF

Field design has wide applications in graphics and visualization. One of the main challenges in field design has been how to provide users with both intuitive control over the directions in the field on one hand and robust management of its topology on the other hand. In this paper, we present a design paradigm for line fields that addresses this challenge.

View Article and Find Full Text PDF
Adaptive geometry image.

IEEE Trans Vis Comput Graph

July 2008

We present a novel post-processing utility called adaptive geometry image (AGIM) for global parameterization techniques that can embed a 3D surface onto a rectangular1 domain. This utility first converts a single rectangular parameterization into many different tessellations of square geometry images(GIMs) and then efficiently packs these GIMs into an image called AGIM. Therefore, undersampled regions of the input parameterization can be up-sampled accordingly until the local reconstruction error bound is met.

View Article and Find Full Text PDF