A series of poly(lactide-co-glycolide) (PLGA)/ hyaluronic acid (HA) blend with different HA composition were used to fabricate scaffolds successfully. The pores of the three dimensional scaffold were prepared by particle leaching and freeze drying. The pore size was about 50-200 microm and the porosity was about 85%.
View Article and Find Full Text PDFIn this investigation, new biodegradable brush-like amphiphilic copolymers were synthesized by ring opening polymerization. Poly(L-lactide) (PLLA) was grafted onto chondroitin sulfate (CS), which is one of the physiologically significant specific glycosaminoglycans (GAGs), using a tin octanoate [Sn(Oct)2] catalyst in DMSO. The hydroxyl groups of the chondroitin sulfate were used as initiating groups.
View Article and Find Full Text PDFA novel biodegradable graft copolymer chondroitin sulfate-grafted poly(L-lactide) (CS-PLLA) was synthesized. The graft copolymer was blended with PLLA to form biomimetic porous scaffolds. Natural CS was introduced into the polyester matrix to promote the proliferation of cells.
View Article and Find Full Text PDFNovel polymeric amphiphilic copolymers were synthesized using chondroitin sulfate (CS) as a hydrophilic segment and poly(L-lactide) (PLLA) as a hydrophobic segment. Micelles of those copolymers were formed in an aqueous phase and were characterized by 1H NMR spectra, fluorescence techniques, dynamic light scattering (DLS), atomic force microscopy (AFM), and confocal microscopy. Their critical aggregation concentrations (CAC) are in the range of 0.
View Article and Find Full Text PDF