Publications by authors named "Chih-Shan J Chen"

Semantic segmentation of basal cell carcinoma (BCC) from full-field optical coherence tomography (FF-OCT) images of human skin has received considerable attention in medical imaging. However, it is challenging for dermatopathologists to annotate the training data due to OCT's lack of color specificity. Very often, they are uncertain about the correctness of the annotations they made.

View Article and Find Full Text PDF

Histopathology for tumor margin assessment is time-consuming and expensive. High-resolution full-field optical coherence tomography (FF-OCT) images fresh tissues rapidly at cellular resolution and potentially facilitates evaluation. Here, we define FF-OCT features of normal and neoplastic skin lesions in fresh ex vivo tissues and assess its diagnostic accuracy for malignancies.

View Article and Find Full Text PDF

Tertiary lymphoid structures (TLS) are specialized lymphoid formations that serve as local repertoire of T- and B-cells at sites of chronic inflammation, autoimmunity, and cancer. While presence of TLS has been associated with improved response to immune checkpoint blockade therapies and overall outcomes in several cancers, its prognostic value in basal cell carcinoma (BCC) has not been investigated. Herein, we determined the prognostic impact of TLS by relating its prevalence and maturation with outcome measures of anti-tumor immunity, namely tumor infiltrating lymphocytes (TILs) and tumor killing.

View Article and Find Full Text PDF

Response to immunotherapies can be variable and unpredictable. Pathology-based phenotyping of tumors into 'hot' and 'cold' is static, relying solely on T-cell infiltration in single-time single-site biopsies, resulting in suboptimal treatment response prediction. Dynamic vascular events (tumor angiogenesis, leukocyte trafficking) within tumor immune microenvironment (TiME) also influence anti-tumor immunity and treatment response.

View Article and Find Full Text PDF

Ex vivo confocal microscopy (EVCM) generates digitally colored purple-pink images similar to H&E without time-consuming tissue processing. It can be used during Mohs surgery for rapid detection of basal cell carcinoma (BCC); however, reading EVCM images requires specialized training. An automated approach using a deep learning algorithm for BCC detection in EVCM images can aid in diagnosis.

View Article and Find Full Text PDF

Reflectance confocal microscopy (RCM) with endogenous backscattered contrast can noninvasively image basal cell carcinomas (BCCs) in skin. However, BCCs present with high nuclear density, and the relatively weak backscattering from nuclei imposes a fundamental limit on contrast, detectability, and diagnostic accuracy. We investigated PARPi-FL, an exogenous nuclear poly(adenosine diphosphate ribose) polymerase (PARP1)-targeted fluorescent contrast agent, and fluorescence confocal microscopy toward improving BCC diagnosis.

View Article and Find Full Text PDF

Background: Accurate basal cell carcinoma (BCC) subtyping is requisite for appropriate management, but non-representative sampling occurs in 18% to 25% of biopsies. By enabling non-invasive diagnosis and more comprehensive sampling, integrated reflectance confocal microscopy-optical coherence tomography (RCM-OCT) may improve the accuracy of BCC subtyping and subsequent management. We evaluated RCM-OCT images and histopathology slides for the presence of two key features, angulation and small nests and cords, and calculated (a) sensitivity and specificity of these features, combined and individually, for identifying an infiltrative BCC subtype and (b) agreement across modalities.

View Article and Find Full Text PDF

The increasing rate of incidence and prevalence of basal cell carcinomas (BCCs) worldwide, combined with the morbidity associated with conventional surgical treatment has led to the development and use of alternative minimally invasive non-surgical treatments. Biopsy and pathology are used to guide BCC diagnosis and assess margins and subtypes, which then guide the decision and choice of surgical or non-surgical treatment. However, alternatively, a noninvasive optical approach based on combined reflectance confocal microscopy (RCM) and optical coherence tomography (OCT) imaging may be used.

View Article and Find Full Text PDF
Article Synopsis
  • Dermoscopy and reflectance confocal microscopy (RCM) are special tools that help doctors see skin problems without doing surgery.
  • A new method called 'precision biopsy' connects these imaging techniques with lab tests to get accurate diagnoses.
  • In a study with 23 patients, this technique successfully diagnosed 24 skin issues, showing that it’s possible to take small samples while getting clear results.
View Article and Find Full Text PDF

Background: Lentigo maligna/lentigo maligna melanoma (LM/LMM) can present with subclinical extension that may be difficult to define preoperatively and lead to incomplete excision and potential recurrence. Preliminarily studies have used reflectance confocal microscopy (RCM) to assess LM/LMM margins.

Objective: To evaluate the correlation of LM/LMM subclinical extension defined by RCM compared with the gold standard histopathology.

View Article and Find Full Text PDF

Background: A diminished-staining artifact is observed in some Mohs frozen sections that are stained in toluidine blue (T-blue). Such an artifact, not yet described in the literature, may interfere with a Mohs surgeon's accurate reading. The authors hypothesize that topical hemostatic agents, aluminum chloride, and Monsel's solution are the causative factors.

View Article and Find Full Text PDF

Importance: The limited tissue sampling of a biopsy can lead to an incomplete assessment of basal cell carcinoma (BCC) subtypes and depth. Reflectance confocal microscopy (RCM) combined with optical coherence tomography (OCT) imaging may enable real-time, noninvasive, comprehensive three-dimensional sampling in vivo, which may improve the diagnostic accuracy and margin assessment of BCCs.

Objective: To determine the accuracy of a combined RCM-OCT device for BCC detection and deep margin assessment.

View Article and Find Full Text PDF

Laser ablation offers a procedure for precise, fast, and minimally invasive removal of superficial and early nodular basal cell carcinomas (BCCs). However, the lack of histopathological confirmation has been a limitation toward widespread use in the clinic. A reflectance confocal microscopy (RCM) imaging-guided approach offers cellular-level histopathology-like feedback directly on the patient, which may then guide and help improve the efficacy of the ablation procedure.

View Article and Find Full Text PDF

We present a hand-held implementation and preliminary evaluation of a combined optical coherence tomography (OCT) and reflectance confocal microscopy (RCM) probe for detecting and delineating the margins of basal cell carcinomas (BCCs) in human skin View Article and Find Full Text PDF