Publications by authors named "Chih-Hao Wu"

Metabolism of haem by-products such as bilirubin by humans and their gut microbiota is essential to human health, as excess serum bilirubin can cause jaundice and even neurological damage. The bacterial enzymes that reduce bilirubin to urobilinogen, a key step in this pathway, have remained unidentified. Here we used biochemical analyses and comparative genomics to identify BilR as a gut-microbiota-derived bilirubin reductase that reduces bilirubin to urobilinogen.

View Article and Find Full Text PDF

Intratumoral heterogeneity (ITH) can promote cancer progression and treatment failure, but the complexity of the regulatory programs and contextual factors involved complicates its study. To understand the specific contribution of ITH to immune checkpoint blockade (ICB) response, we generated single cell-derived clonal sublines from an ICB-sensitive and genetically and phenotypically heterogeneous mouse melanoma model, M4. Genomic and single cell transcriptomic analyses uncovered the diversity of the sublines and evidenced their plasticity.

View Article and Find Full Text PDF

The degradation of heme and the interplay of its catabolic derivative, bilirubin, between humans and their gut microbiota is an essential facet of human health. However, the hypothesized bacterial enzyme that reduces bilirubin to urobilinogen, a key step that produces the excretable waste products of this pathway, has remained unidentified. In this study, we used a combination of biochemical analyses and comparative genomics to identify a novel enzyme, BilR, that can reduce bilirubin to urobilinogen.

View Article and Find Full Text PDF

Bacterial RNases process RNAs until only short oligomers (2-5 nucleotides) remain, which are then processed by one or more specialized enzymes until only nucleoside monophosphates remain. Oligoribonuclease (Orn) is an essential enzyme that acts in this capacity. However, many bacteria do not encode for Orn and instead encode for NanoRNase A (NrnA).

View Article and Find Full Text PDF

Bacterial NusG associates with RNA polymerase (RNAP) through its N-terminal domain, while the C-terminal domain (CTD) forms dynamic interactions with Rho, S10, NusB and NusA to affect transcription elongation. While virtually all bacteria encode for a core NusG, many also synthesize paralogs that transiently bind RNAP to alter expression of targeted genes. Yet, despite the importance of the genes they regulate, most of the subfamilies of NusG paralogs (e.

View Article and Find Full Text PDF
Article Synopsis
  • Hypoxia limits overall protein production, but certain essential proteins are still produced through alternative pathways, notably via the internal ribosome entry site (IRES), though how this works is not fully understood.* -
  • Researchers used proteomic, bioinformatic, and clinical analyses to identify hnRNPM as an IRES-binding factor, finding that its expression rises in colon cancer and correlates with worse patient outcomes.* -
  • The study concluded that hnRNPM plays a vital role in activating translation of specific genes under hypoxic conditions, contributing to cancer progression and highlighting the importance of IRES-mediated translation in tumor biology.*
View Article and Find Full Text PDF

Objectives: It is understood that children and adolescents with autism spectrum disorders (ASDs) have difficulty in receiving dental treatment. This study explores the differences in dental utilization and expenditure between two groups: children and adolescents with and without ASD. Different conditions that affect these results will be examined, including area of residence, category of treatment, and preferences concerning type of dental institution in Taiwan.

View Article and Find Full Text PDF

Human fibroblast growth factor 9 (FGF9) is a potent mitogen involved in many physiological processes. Although FGF9 messenger RNA (mRNA) is ubiquitously expressed in embryos, FGF9 protein expression is generally low and restricted to a few adult organs. Aberrant expression of FGF9 usually results in human malignancies including cancers, but the mechanism remains largely unknown.

View Article and Find Full Text PDF

An ergostane type triterpenoid methylantcinate A (MAA) isolated from the fruiting bodies of Antrodia camphorata inhibited the growth of oral cancer cell lines OEC-M1 and OC-2 in a dose-dependent manner, without cytotoxic to normal oral gingival fibroblast cells. The major mechanism of growth inhibition was apoptosis induction, as shown by flow cytometric analysis of annexin V-FITC and propidium iodide staining, caspase-3 activation and DNA fragmentation. The increased expression of pro-apoptotic Bax, poly-(ADP-ribose) polymerase cleavage, and activated caspase-3 and decreased expression of anti-apoptotic Bcl-2 and Bcl-xL were also observed.

View Article and Find Full Text PDF