Publications by authors named "Chih-Hao Li"

Article Synopsis
  • * A study of 215 schwannomas revealed that 13.5% had the fusion, with the highest prevalence in peripheral somatic tissues, and a unique 'serpentine' palisading pattern was noted in most fusion-positive cases.
  • * The presence of this serpentine pattern correlated with the fusion status, suggesting it could be used as a predictive marker, along with tumor size, patient age, and location, while advanced RNA techniques confirmed the fusion's existence.
View Article and Find Full Text PDF

The aim of this study was to investigate the feasibility of using machine learning techniques based on morphological features in classifying two subtypes of primary intestinal T-cell lymphomas (PITLs) defined according to the WHO criteria: monomorphic epitheliotropic intestinal T-cell lymphoma (MEITL) versus intestinal T-cell lymphoma, not otherwise specified (ITCL-NOS), which is considered a major challenge for pathological diagnosis. A total of 40 histopathological whole-slide images (WSIs) from 40 surgically resected PITL cases were used as the dataset for model training and testing. A deep neural network was trained to detect and segment the nuclei of lymphocytes.

View Article and Find Full Text PDF

Background: Authors of several studies have reported differences in the prevalence of metabolic syndrome (MetS) between men and women. However, information is lacking on gender difference among military personnel.

Objective: The aim of this study was to examine the prevalence of MetS and its component abnormalities among Taiwanese Air Force personnel by gender and age groups.

View Article and Find Full Text PDF

To realize a broadband, large-line-spacing astro-comb, suitable for wavelength calibration of astrophysical spectrographs, from a narrowband, femtosecond laser frequency comb ("source-comb"), one must integrate the source-comb with three additional components: (1) one or more filter cavities to multiply the source-comb's repetition rate and thus line spacing; (2) power amplifiers to boost the power of pulses from the filtered comb; and (3) highly nonlinear optical fiber to spectrally broaden the filtered and amplified narrowband frequency comb. In this paper we analyze the interplay of Fabry-Perot (FP) filter cavities with power amplifiers and nonlinear broadening fiber in the design of astro-combs optimized for radial-velocity (RV) calibration accuracy. We present analytic and numeric models and use them to evaluate a variety of FP filtering schemes (labeled as identical, co-prime, fraction-prime, and conjugate cavities), coupled to chirped-pulse amplification (CPA).

View Article and Find Full Text PDF

We propose a new astro-comb mode-filtering scheme composed of two Fabry-Perot cavities (coined "conjugate Fabry-Perot cavity pair"). Simulations indicate that this new filtering scheme makes the accuracy of astro-comb spectral lines more robust against systematic errors induced by nonlinear processes associated with power-amplifying and spectral-broadening optical fibers.

View Article and Find Full Text PDF

We deployed two wavelength calibrators based on laser frequency combs ("astro-combs") at an astronomical telescope. One astro-comb operated over a 100 nm band in the deep red (∼ 800 nm) and a second operated over a 20 nm band in the blue (∼ 400 nm). We used these red and blue astro-combs to calibrate a high-resolution astrophysical spectrograph integrated with a 1.

View Article and Find Full Text PDF

A broadband dispersion-free optical cavity using a zero group delay dispersion (zero-GDD) mirror set is demonstrated. In general zero-GDD mirror sets consist of two or more mirrors with opposite group delay dispersion (GDD), that when used together, form an optical cavity with vanishing dispersion over an enhanced bandwidth in comparison with traditional low GDD mirrors. More specifically, in this paper, we show a realization of such a two-mirror cavity, where the mirrors show opposite GDD and simultaneously a mirror reflectivity of 99.

View Article and Find Full Text PDF

We demonstrate a tunable laser frequency comb operating near 420 nm with mode spacing of 20-50 GHz, usable bandwidth of 15 nm and output power per line of ~20 nW. Using the TRES spectrograph at the Fred Lawrence Whipple Observatory, we characterize this system to an accuracy below 1m/s, suitable for calibrating high-resolution astrophysical spectrographs used, e.g.

View Article and Find Full Text PDF

Improved wavelength calibrators for high-resolution astrophysical spectrographs will be essential for precision radial velocity (RV) detection of Earth-like exoplanets and direct observation of cosmological deceleration. The astro-comb is a combination of an octave-spanning femtosecond laser frequency comb and a Fabry-Pérot cavity used to achieve calibrator line spacings that can be resolved by an astrophysical spectrograph. Systematic spectral shifts associated with the cavity can be 0.

View Article and Find Full Text PDF

We propose and analyze a new approach to generate a broadband astro-comb by spectral broadening of a narrowband astro-comb inside a highly nonlinear optical fiber. Numerical modeling shows that cascaded four-wave-mixing dramatically degrades the input comb's side-mode suppression and causes side-mode amplitude asymmetry. These two detrimental effects can systematically shift the center-of-gravity of astro-comb spectral lines as measured by an astrophysical spectrograph with resolution approximately 100,000; and thus lead to wavelength calibration inaccuracy and instability.

View Article and Find Full Text PDF

Rationale And Objectives: The human lung and its functions are extremely sensitive to orientation and posture, and debate continues as to the role of gravity and the surrounding anatomy in determining lung function and heterogeneity of perfusion and ventilation. However, study of these effects is difficult. The conventional high-field magnets used for most hyperpolarized (3)He magnetic resonance imaging (MRI) of the human lung, and most other common radiologic imaging modalities including positron emission tomography and computed tomography, restrict subjects to lying horizontally, minimizing most gravitational effects.

View Article and Find Full Text PDF

Searches for extrasolar planets using the periodic Doppler shift of stellar spectral lines have recently achieved a precision of 60 cm s(-1) (ref. 1), which is sufficient to find a 5-Earth-mass planet in a Mercury-like orbit around a Sun-like star. To find a 1-Earth-mass planet in an Earth-like orbit, a precision of approximately 5 cm s(-1) is necessary.

View Article and Find Full Text PDF