The exact superconducting phase of K Fe Se has so far not been conclusively decided since its discovery due to its intrinsic multiphase in early material. In an attempt to resolve this mystery, we have carried out systematic structural studies on a set of well-controlled samples with exact chemical stoichiometry K Fe Se ( = 0-0.3) that are heat-treated at different temperatures.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2014
Several superconducting transition temperatures in the range of 30-46 K were reported in the recently discovered intercalated FeSe system (A1-xFe2-ySe2, A = K, Rb, Cs, Tl). Although the superconducting phases were not yet conclusively decided, more than one magnetic phase with particular orders of iron vacancy and/or potassium vacancy were identified, and some were argued to be the parent phase. Here we show the discovery of the presence and ordering of iron vacancy in nonintercalated FeSe (PbO-type tetragonal β-Fe1-xSe).
View Article and Find Full Text PDFWe report on low-temperature magnetotransport and SQUID measurements on heavily doped Mn-implanted GaAs nanowires. SQUID data recorded at low magnetic fields exhibit clear signs of the onset of a spin-glass phase with a transition temperature of about 16 K. Magnetotransport experiments reveal a corresponding peak in resistance at 16 K and a large negative magnetoresistance, reaching 40% at 1.
View Article and Find Full Text PDF