The increasing rate of intensive care unit (ICU) readmissions poses significant challenges in healthcare, impacting both costs and patient outcomes. Predicting patient readmission after discharge is crucial for improving medical quality and reducing expenses. Traditional analyses of electronic health record (EHR) data have primarily focused on numerical data, often neglecting valuable text data.
View Article and Find Full Text PDFInt J Environ Res Public Health
February 2023
An ICU is a critical care unit that provides advanced medical support and continuous monitoring for patients with severe illnesses or injuries. Predicting the mortality rate of ICU patients can not only improve patient outcomes, but also optimize resource allocation. Many studies have attempted to create scoring systems and models that predict the mortality of ICU patients using large amounts of structured clinical data.
View Article and Find Full Text PDFCardiovascular diseases have been identified as one of the top three causes of death worldwide, with onset and deaths mostly due to heart failure (HF). In ICU, where patients with HF are at increased risk of death and consume significant medical resources, early and accurate prediction of the time of death for patients at high risk of death would enable them to receive appropriate and timely medical care. The data for this study were obtained from the MIMIC-III database, where we collected vital signs and tests for 6699 HF patient during the first 24 h of their first ICU admission.
View Article and Find Full Text PDFPredicting clinical patients' vital signs is a leading critical issue in intensive care units (ICUs) related studies. Early prediction of the mortality of ICU patients can reduce the overall mortality and cost of complication treatment. Some studies have predicted mortality based on electronic health record (EHR) data by using machine learning models.
View Article and Find Full Text PDF