In this study, the design of a Digital-twin human-machine interface sensor (DT-HMIS) is proposed. This is a digital-twin sensor (DT-Sensor) that can meet the demands of human-machine automation collaboration in Industry 5.0.
View Article and Find Full Text PDFAn inherent problem with bacterial cell factories used to produce recombinant proteins or metabolites is that resources are channeled into unwanted biomass as well as product. Over several years, attempts have been made to increase efficiency by unlinking biomass and product generation. One example was the quiescent cell (Q-Cell) expression system that generated non-growing but metabolically active Escherichia coli by over-expressing a regulatory RNA (Rcd) in a defined genetic background.
View Article and Find Full Text PDFSynthetic biology approaches for the synthesis of value-based products provide interesting and potentially fruitful possibilities for generating a wide variety of useful compounds and biofuels. However, industrial production is hampered by the costs associated with the need to supplement large microbial cultures with expensive but necessary co-inducer compounds and antibiotics that are required for up-regulating synthetic gene expression and maintaining plasmid-borne synthetic genes, respectively. To address these issues, a metabolism-based plasmid addiction system, which relies on lipopolysaccharide biosynthesis and maintenance of cellular redox balance for 1-butanol production; and utilizes an active constitutive promoter, was developed in .
View Article and Find Full Text PDF