In this study, nanopiezoelectric devices based on ZnO nanorod array/conducting polymers are fabricated for wearable power generation application. To replace the inorganic rigid indium-tin oxide (ITO) conducting coating commonly used in the nanogenerator devices, a series of flexible polyaniline-based conducting copolymers underlying the perpendicularly-oriented ZnO nanorod arrays has been synthesized with improved electric conductivity by the copolymerization of aniline and 3,4-ethylenedioxythiophene (EDOT) monomers in order to optimize the piezoelectric current collection efficiency of the devices. It is found that significantly higher conductivity can be obtained by small addition of EDOT monomer into aniline monomer solution using an in-situ oxidative polymerization method for the synthesis of the copolymer coatings.
View Article and Find Full Text PDFSupported lipid bilayers (SLBs) have been widely used to provide native environments for membrane protein studies. In this study, we utilized graphene field-effect transistors (GFETs) coated with a fluid SLB to perform label-free detection of membrane-associated ligand-receptor interactions in their native lipid bilayer environment. It is known that the analyte-binding event needs to occur within the Debye length for it to be significantly sensed by an FET sensor.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2019
Stimuli-responsive polymers are capable of responding to external stimuli and therefore have been widely used for sensing. However, such applications are often based on naïve designs and cannot achieve the desired performance. In this study, we created a micro thermosensor with temperature-sensitive poly( N-isopropylacrylamide) (PNIPAM) hydrogel and temperature-insensitive poly(ethylene glycol) diacrylate (PEGDA) hydrogel using stop-flow lithography.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
March 2019
Biocompatible and highly porous network hydrogel scaffolds were fabricated for the development of artificial cornea (AC) periphery/skirt that could be used to enhance the long-term retention of the implants. In this study, a series of hydrogel scaffolds for this application was fabricated from the photo-polymerization of a mixture of poly(ethylene glycol) (PEG)- and poloxamer (P407)-based macromer solutions in dichloromethane in which solvent-induced phase separation (SIPS) arose to form scaffolds with macroporous structure and high water content. The overall porosity ranging from 20% to 75% and open/closed pore structure of the hydrogel scaffolds could be finely tuned by varying the ratio of P407/PEG in the macromer solution and solvent type.
View Article and Find Full Text PDFBiomicrofluidics
January 2014
Recently, we have reported the experimental results of DNA stretching by flow field in three microchannels (C. H. Lee and C.
View Article and Find Full Text PDFWe examined the performance of three microfluidic devices for stretching DNA. The first device is a microchannel with a contraction, and the remaining two are the modifications to the first. The modified designs were made with the help of computer simulations [C.
View Article and Find Full Text PDFA facile and versatile tool is reported that uses a photodefinable polymer, poly(4-benzoyl-p-xylylene-co-p-xylylene) to immobilize antifouling materials, such as poly(ethylene glycol), poly(ethylene glycol) methyl ether methacrylate, dextran, and ethanolamine. This immobilization process requires the polymer's photoactivated carbonyl groups, which can facilitate light-induced molecular crosslinking and can rapidly react via insertion into CH or NH bonds upon photo-illumination at 365 nm. Importantly, the process does not require additional functional groups on the antifouling materials.
View Article and Find Full Text PDFThe tri-functional coating synthesized via CVD copolymerization is comprised of distinguished anchoring sites of acetylene, maleimide, and ketone that can synergically undergo specific conjugation reactions to render surfaces with distinct biological functions, simultaneously. In addition, these tri-functional coatings can be fabricated in a micro-structured fashion on non-conventional surfaces.
View Article and Find Full Text PDFPoly(4-benzoyl-p-xylylene-co-p-xylylene), a biologically compatible photoreactive polymer belonging to the parylene family, can be deposited using a chemical vapor deposition (CVD) polymerization process on a wide range of substrates. This study discovered that the solvent stability of poly(4-benzoyl-p-xylylene-co-p-xylylene) in acetone is significantly increased when exposed to approximately 365 nm of UV irradiation, because of the cross-linking of benzophenone side chains with adjacent molecules. This discovery makes the photodefinable polymer a powerful tool for use as a negative photoresist for surface microstructuring and biointerface engineering purposes.
View Article and Find Full Text PDFWe have used Brownian dynamics-finite element method to examine two conformational preconditioning approaches for improving DNA stretching in a microcontraction for the purpose of direct gene analysis. The newly proposed "pre-stretching" strategy is found to significantly improve the degree of DNA extension at the exit of the contraction. On the other hand, applying an oscillating extensional field to DNA yields no preconditioning effect.
View Article and Find Full Text PDFWe have used Brownian dynamics-finite element method (BD-FEM) to guide the optimization of a microfluidic device designed to stretch DNA for gene mapping. The original design was proposed in our previous study [C. C.
View Article and Find Full Text PDFThe ionic effects on the dynamics and conformation of DNA in silt-like confinement are investigated. Confined lambda-DNA is considered as a model polyelectrolyte, and its longest relaxation time, diffusivity, and size are measured at a physiological ionic strength between 1.7-170 mM.
View Article and Find Full Text PDFA very stiff finitely extensible nonlinear elastic (FENE)-Fraenkel spring is proposed to replace the rigid rod in the bead-rod model. This allows the adoption of a fast predictor-corrector method so that large time steps can be taken in Brownian dynamics (BD) simulations without over- or understretching the stiff springs. In contrast to the simple bead-rod model, BD simulations with beads and FENE-Fraenkel (FF) springs yield a random-walk configuration at equilibrium.
View Article and Find Full Text PDF