Publications by authors named "Chih Yuan Chen"

Acute respiratory distress syndrome (ARDS) is a critical illness in critically unwell patients, characterized by refractory hypoxemia and shock. This study evaluates an early detection tool and investigates the relationship between hypoxia and circulatory shock in ARDS, to improve diagnostic precision and therapy customization. We used a porcine model, inducing ARDS with mechanical ventilation and intratracheal plus intravenous lipopolysaccharide (LPS) injection.

View Article and Find Full Text PDF

Acute lung injury (ALI) is characterised by severe pulmonary inflammation, alveolar-capillary barrier disruption, and pulmonary oedema. Therefore, establishing effective therapeutic targets for ALI prevention is crucial. The present study reports a novel function of RNF128 in regulating LPS-induced ALI.

View Article and Find Full Text PDF

Atomically precise thiolate-protected coinage metal nanoclusters and their alloys are far more numerous than their selenium congeners, the synthesis of which remains extremely challenging. Herein, we report the synthesis of a series of atomically defined dithiophosph(in)ate protected eight-electron superatomic palladium silver nanoalloys [PdAg{SPR}], 2a-c (where R = OPr, a; OBu, b; Ph, c) via ligand exchange and/or co-reduction methods. The ligand exchange reaction on [PdAg{SP(OPr)}], 1, with [NH{SePR}] (where R = OPr, or OPr) leads to the formation of [PdAg{SeP(OPr)}] (3) and [PdAg{SeP(OPr)}] (4), respectively.

View Article and Find Full Text PDF

Electron work function (EWF) has demonstrated its great promise in materials analysis and design, particularly for single-phase materials, e.g., solute selection for optimal solid-solution strengthening.

View Article and Find Full Text PDF

This study proposes a gradient-boosting-based machine learning approach for predicting the PM concentration in Taiwan. The proposed mechanism is evaluated on a large-scale database built by the Environmental Protection Administration, and Central Weather Bureau, Taiwan, which includes data from 77 air monitoring stations and 580 weather stations performing hourly measurements over 1 year. By learning from past records of PM and neighboring weather stations' climatic information, the forecasting model works well for 24-h prediction at most air stations.

View Article and Find Full Text PDF

In the present study, spherical composite powder was successfully prepared via spray drying process using polymethyl methacrylate (PMMA) and hexagonal boron nitride (h-BN) powders. The pristine and as-prepared composite powders were examined using scanning electron microscopy, a particle size analyzer, oil absorption, and specific surface area analyses. These powders were then mixed with linseed oil to prepare samples for UV-Visible-Near Infrared spectroscopy investigation to determine their light absorption ability.

View Article and Find Full Text PDF

In this work, an observation on random telegraph noise (RTN) signal in the read current of a FinFET dielectric RRAM (FIND RRAM) device is presented. The RTN signal of a FIND RRAM cell is found to change after the device being subjected to cycling stress. After undergoing cycling stress, RRAM cells have a stronger tendency to show more frequent and intense RTN signals.

View Article and Find Full Text PDF

Convergent beam electron diffraction (CBED) in transmission electron microscopy (TEM) was applied to determine local carbon concentrations in low-carbon transformation-induced plasticity (TRIP) steels. High-order Laue-zone (HOLZ) lines were experimentally obtained for comparison with simulation results. A new procedure for calculating carbon content is thus proposed.

View Article and Find Full Text PDF

HIV has been reported to be cytotoxic in vitro and in lymph node infection models. Using a computational approach, we found that partial inhibition of transmissions of multiple virions per cell could lead to increased numbers of live infected cells. If the number of viral DNA copies remains above one after inhibition, then eliminating the surplus viral copies reduces cell death.

View Article and Find Full Text PDF

Fluorophores that absorb and emit in the red spectral region (600-700 nm) are of great interest in photochemistry and photomedicine. Eight new target chlorins (and 19 new chlorins altogether)-analogues of chlorophyll-of different polarities have been designed and synthesized for various applications; seven of the chlorins are equipped with a bioconjugatable tether. Hydrophobic or amphiphilic chlorins in a non-polar organic solvent (toluene), polar organic solvent (DMF), and aqueous or aqueous micellar media show a sharp emission band in the red region and modest fluorescence quantum yield (Φ = 0.

View Article and Find Full Text PDF

Chromophores that absorb and emit in the red spectral region (600-700 nm), are water soluble, and bear a bioconjugatable tether are relatively rare yet would fulfill many applications in photochemistry and photomedicine. Here, three molecular designs have been developed wherein stable synthetic chlorins - analogues of chlorophylls - have been tailored with PEG groups for use in aqueous solution. The designs differ with regard to order of the installation (pre/post-formation of the chlorin macrocycle) and position of the PEG groups.

View Article and Find Full Text PDF

Seasonal influenza viruses impact public health annually due to their continual evolution. However, the current inactivated seasonal vaccines provide poor protection against antigenically drifted viruses and require periodical reformulation through hit-and-miss predictions about which strains will circulate during the next season. To reduce the impact caused by vaccine mismatch, we investigated the drift-tolerance of virus-like particles (VLP) as an improved vaccine candidate.

View Article and Find Full Text PDF

A patterned gold nanoparticle microarray, functionalized with a nanoscale silicate coating, has been developed for on-chip, high-throughput mass spectrometric analyses of biomolecules with minimal sample preparation and reagent costs. Fabrication was realized by the combination of layer-by-layer functionalization of the nanoparticles with suitable polyelectrolytes, followed by fluidic patterning of the glass microarray support and calcination for permanent fixation of the nano-coating. Performance of the microarray was evaluated for surface-assisted laser-desorption/ionization mass spectrometry (SALDI-MS), where the nano-silicate coating was found to enhance SALDI efficiency, resulting in comparable performance to some common organic matrices for small and medium sized molecules.

View Article and Find Full Text PDF

Avian influenza A(H6N1) virus is one of the most common viruses isolated from migrating birds and domestic poultry in many countries. The first and only known case of human infection by H6N1 virus in the world was reported in Taiwan in 2013. This led to concern that H6N1 virus may cause a threat to public health.

View Article and Find Full Text PDF

Localized surface plasmon resonance (LSPR) represents a sensitive and versatile method for detection of biomolecules in a label-free fashion, but identification of bound analytes can be challenging with LSPR alone, especially for samples in a complex medium. We report the fabrication of an optically active, plasmonic film of gold nanoparticles by using a self-assembly and calcination process, which offers orthogonal measurements enabling multifaceted characterization on the same surface with LSPR and surface-assisted laser desorption/ionization mass spectrometry. This proof-of-concept study involves plasmonic characterization of the fabricated nanofilm, real-time monitoring of vesicle-surface interactions toward formation of fluid lipid bilayer, and mass spectrometric analysis of peptides and cytochrome c digest.

View Article and Find Full Text PDF

Optical sensors capable of colorimetric visualization and/or fluorescence detection have shown tremendous potential for field technicians and emergency responders, owing to the portability and low cost of such devices. Polydiacetylene (PDA)-enhanced nanofibers are particularly promising due to high surface area, facile functionalization, simple construction, and the versatility to empower either colorimetric or fluorescence signaling. We demonstrate here a dual-mode optical sensing with electrospun nanofibers embedded with various PDAs.

View Article and Find Full Text PDF

Vibronic characteristics and spin-density distributions in the core bacteriochlorin macrocycle were revealed by spectroscopic and theoretical studies of 16 isotopologues. The vibrational modes in copper bacteriochlorin isotopologues were examined via resonance Raman and Fourier-transform infrared spectroscopy. The resonance Raman spectra exhibit an exceptional sparcity of vibronically active modes of the core macrocycle, in contrast with the rich spectra of the natural bacteriochlorophylls.

View Article and Find Full Text PDF

Synthetic bacteriochlorins containing site-specific isotopic substitution enable spectroscopic interrogation to delineate physicochemical features relevant to bacteriochlorophylls in photosynthesis but have been little explored. A de novo synthesis has been employed to prepare bacteriochlorins wherein each macrocycle contains a pair of (13)C or (15)N atoms yet lacks substituents other than a geminal dimethyl group in each pyrroline ring. Preparation of a dihydrodipyrrin–acetal with single-isotopic substitution gives rise to a bacteriochlorin that contains two isotopic substitutions symmetrically disposed by a 180° rotation about the normal to the plane of the macrocycle.

View Article and Find Full Text PDF

The effect of the rigid bulky pentiptycene scaffolds on the photoluminescence, redox properties, and oxygen sensing behavior of unichromophoric Pt-acetylides is reported. When the pentiptycene groups are near the Pt(PBu3)2 center, the Pt-acetylides display both blue fluorescence and green phosphorescence with long phosphorescence lifetimes (90-202 μs) in THF. Their phosphorescence intensity is highly sensitive to molecular oxygen, and the emission color depends on the concentration of not only oxygen but also the complexes, which allows a feasible determination of oxygen in the range of 1-5% air volume.

View Article and Find Full Text PDF

Heat-killed lactic acid bacteria (LAB) has advantages over live LAB in that it has a long shelf-life and is therefore easy to store and transport. From four LAB strains selected by immunomodulatory activity and adherent properties, we prepared the heat-killed multispecies combination of LAB (MLAB) and the cell walls from MLAB under two conditions (100 °C for 30 min and 121 °C for 15 min). Different effects on the adherent properties of these four LAB strains were observed, depending on the heating conditions.

View Article and Find Full Text PDF

This work describes a bio-potential acquisition system for portable ubiquitous healthcare applications using flexible polydimethylsiloxane dry electrodes (FPDEs) and a low-power recording circuit. This novel FPDE used Au as the skin contact layer, which was made using a CO2 laser and replica method technology. The FPDE was revised from a commercial bio-potential electrode with a conductive snap using dry electrodes rather than wet electrodes that proposed reliable and robust attachment for the purpose of measurement, and attaching velcro made it wearable on the forearm for bio-potential applications.

View Article and Find Full Text PDF

We present a highly sensitive metal enhanced fluorescence (MEF) method based on a novel silver nanostructure fabricated with Cy5-functionalized silver nanoparticles (AgNPs) and AgNO(3). The analytical performance has been demonstrated by microarray detection of streptavidin (SA) and human IgE. The fluorescence intensity can be enhanced substantially with the combined use of AgNPs and fluorescence enhanced solution (FES).

View Article and Find Full Text PDF

Access to metallobacteriochlorins is essential for investigation of a wide variety of fundamental photochemical processes, yet relatively few synthetic metallobacteriochlorins have been prepared. Members of a set of synthetic bacteriochlorins bearing 0-4 carbonyl groups (1, 2, or 4 carboethoxy substituents, or an annulated imide moiety) were examined under two conditions: (i) standard conditions for zincation of porphyrins [Zn(OAc)(2)·2H(2)O in N,N-dimethylformamide (DMF) at 60-80 °C], and (ii) treatment in tetrahydrofuran (THF) with a strong base [e.g.

View Article and Find Full Text PDF

The Boyden chamber assay measures the coefficients of cell motility by fitting the experiments with theoretical calculations. Under the circumstance of rapid receptor kinetics, the distribution of chemical-receptor complexes on the cell surface can be treated as being quasi-steady and chemotaxis is directly related to the biochemical concentration, leading to the celebrated Keller-Segel model, which has been shown to be an approximation to the full receptor-mediated form. No matter approximate or full, these approaches have ignored cell sedimentation in the upper chamber, assuming that all the cells have already resided on the filter top at the beginning of the test.

View Article and Find Full Text PDF

The effects and mechanism of action of oligodeoxyribonucleotides containing CpG motif (CpG-ODNs) on neuron cells are largely unexamined. Here, we found that CpG-A ODNs but not other types of CpG-ODNs induced neurite retraction and cell apoptosis of rat embryonic neurons in a TLR9-independent manner. These effects of CpG-A ODNs were primarily due to the poly-guanosine at the 3' terminus (3'G-ODNs).

View Article and Find Full Text PDF