Publications by authors named "Chignola R"

Mantle cell lymphoma (MCL) is an incurable B-cell malignancy characterized by a high clinical variability. Therefore, there is a critical need to define parameters that identify high-risk patients for aggressive disease and therapy resistance. B-cell receptor (BCR) signaling is crucial for MCL initiation and progression and is a target for therapeutic intervention.

View Article and Find Full Text PDF

The reaction of the scientific community against the COVID-19 pandemic has generated a huge (approx. 10 entries) dataset of genome sequences collected worldwide and spanning a relatively short time window. These unprecedented conditions together with the certain identification of the reference viral genome sequence allow for an original statistical study of mutations in the virus genome.

View Article and Find Full Text PDF

Discrimination of honey based on geographical origin is a common fraudulent practice and is one of the most investigated topics in honey authentication. This research aims to discriminate honeys according to their geographical origin by combining elemental fingerprinting with machine-learning techniques. In particular, the main objective of this study is to distinguish the origin of unifloral and multifloral honeys produced in neighboring regions, such as Sardinia (Italy) and Spain.

View Article and Find Full Text PDF

Red cabbage (RC) represents a source of anthocyanins acylated with hydroxycinnamic acids (HCA) that are described to enhance their stability. Nevertheless, data about their thermal degradation are still controversial. Our aim was to comprehensively analyse the degradation kinetics of individual RC anthocyanins in a model aqueous extract treated at 40 °C × 30 days to simulate severe but realistic storage conditions.

View Article and Find Full Text PDF

Encapsulation is a valuable strategy to protect and deliver anthocyanins (ACNs), phenolic compounds with outstanding antioxidant capacity but limited stability. In this study, coacervation was used to encapsulate an ACN-rich red cabbage extract (RCE). Two agri-food by-product polymers, whey protein isolate (WPI) and apple high-methoxyl pectin (HMP), were blended at pH 4.

View Article and Find Full Text PDF

Chronic lymphocytic leukemia (CLL) is an incurable disease characterized by an extremely variable clinical course. We have recently shown that high catalase (CAT) expression identifies patients with an aggressive clinical course. Elucidating mechanisms regulating CAT expression in CLL is preeminent to understand disease mechanisms and develop strategies for improving its clinical management.

View Article and Find Full Text PDF

Silver linden (Tilia tomentosa Moench, TtM) flowers possess several health-promoting properties, especially at the neurological level, such as intestinal relaxation activity associated with specific flavonols, particularly quercetin and kaempferol derivatives. However, such molecules are susceptible to degradation upon different triggers like heat, light and extreme pH values. To overcome the scarce stability of TtM flowers bioactive molecules and make them suitable for developing functional food and supplements, we applied microencapsulation.

View Article and Find Full Text PDF

Several signaling pathways are aberrantly activated in T-ALL due to genetic alterations of their components and in response to external microenvironmental cues. To functionally characterize elements of the signaling network in T-ALL, here we analyzed ten signaling proteins that are frequently altered in T-ALL -namely Akt, Erk1/2, JNK, Lck, NF-κB p65, p38, STAT3, STAT5, ZAP70, Rb- in Jurkat, CEM and MOLT4 cell lines, using phospho-specific flow cytometry. Phosphorylation statuses of signaling proteins were measured in the basal condition or under modulation with HO, PMA, CXCL12 or IL7.

View Article and Find Full Text PDF

SeITE01 is an environmental isolate that transforms the oxyanion selenite ( ) into the less bioavailable elemental selenium (Se) forming biogenic selenium nanoparticles (Bio-SeNPs). In the present study, the reduction of sodium selenite (NaSeO) by SeITE01 strain and the effect of exposure on the bacterial cells was examined through untargeted metabolomics. A time-course approach was used to monitor both cell pellet and cell free spent medium (referred as intracellular and extracellular, respectively) metabolites in SeITE01 cells treated or not with .

View Article and Find Full Text PDF

Radiation-induced fibrosis (RIF) is a serious, yet incurable, complication of external beam radiation therapy for the treatment of cancer. Macrophages are key cellular actors in RIF because of their ability to produce reactive oxidants, such as reactive oxygen species (ROS) and inflammatory cytokines that, in turn, are the drivers of pro-fibrotic pathways. In a previous work, we showed that phagocytosis could be exploited to deliver the potent natural antioxidant astaxanthin specifically to macrophages.

View Article and Find Full Text PDF

Radiation-induced fibrosis is a serious long-lasting side effect of radiation therapy. Central to this condition is the role of macrophages that, activated by radiation-induced reactive oxygen species and tissue cell damage, produce pro-inflammatory cytokines, such as transforming growth factor beta (TGFβ). This, in turn, recruits fibroblasts at the site of the lesion that initiates fibrosis.

View Article and Find Full Text PDF

Recently, clinical trial results have established inhibitors of B-cell receptor (BCR)-associated kinase (BAKi), with or without CD20 moniclonal antibodies (mAbs), as the preferred first-line treatment for most chronic lymphocytic leukaemia (CLL) patients. Using phosphospecific flow cytometry, we showed that in leukaemic cells from CLL patients the CD20 therapeutic antibodies - rituximab, ofatumumab, and obinutuzumab - inhibited BCR signalling pathways targeting preferentially pBTK - but not BTK - and pAKT. On the contrary, ibrutinib and idelalisib reduced pBTK to a higher extent than pBTK .

View Article and Find Full Text PDF

Acidosis of the tumor microenvironment leads to cancer invasion, progression and resistance to therapies. We present a biophysical model that describes how tumor cells regulate intracellular and extracellular acidity while they grow in a microenvironment characterized by increasing acidity and hypoxia. The model takes into account the dynamic interplay between glucose and [Formula: see text] consumption with lactate and [Formula: see text] production and connects these processes to [Formula: see text] and [Formula: see text] fluxes inside and outside cells.

View Article and Find Full Text PDF

There are many reasons to try to achieve a good grasp of the distribution of oxygen in the tumor microenvironment. The lack of oxygen - hypoxia - is a main actor in the evolution of tumors and in their growth and appears to be just as important in tumor invasion and metastasis. Mathematical models of the distribution of oxygen in tumors which are based on reaction-diffusion equations provide partial but qualitatively significant descriptions of the measured oxygen concentrations in the tumor microenvironment, especially when they incorporate important elements of the blood vessel network such as the blood vessel size and spatial distribution and the pulsation of local pressure due to blood circulation.

View Article and Find Full Text PDF

One of many important features of the tumour microenvironment is that it is a place of active Darwinian selection where different tumour clones become adapted to the variety of ecological niches that make up the microenvironment. These evolutionary processes turn the microenvironment into a powerful source of tumour heterogeneity and contribute to the development of drug resistance in cancer. Here, we describe a computational tool to study the ecology of the microenvironment and report results about the ecology of the tumour microenvironment and its evolutionary dynamics.

View Article and Find Full Text PDF

The ability to measure mechanical response of cells under applied load is essential for developing more accurate models of cell mechanics and mechanotransduction. Living cells have been mechanically investigated by several approaches. Among them, atomic force microscopy (AFM) is widely used thanks to its high versatility and sensitivity.

View Article and Find Full Text PDF

It is generally accepted that radiotherapy must target clonogenic cells, i.e., those cells in a tumour that have self-renewing potential.

View Article and Find Full Text PDF

Flaxseed oil is a major source of omega-3 polyunsaturated fatty acids (PUFAs), as it contains nearly 50% of alpha-linolenic acid. For this reason it is highly susceptible to auto-oxidation. The aim of the work was to increase the stability of flaxseed oil by a microencapsulation process based on ionic gelation through vibrating-nozzle extrusion technology, using pectin as shell material.

View Article and Find Full Text PDF

Cell-based lattice-free simulations of the growth of tumor tissues require the definition of geometrical and topological relations among cells and the other basic elements of the simulation (most notably the local and the global environments). This is necessary for the correct description of the biochemistry of tumor tissues, and to implement the biomechanical interactions among cells. Weak cell-cell forces and the necrosis of tumor tissues due to poor vascularization can lead to the formation of cavities - i.

View Article and Find Full Text PDF

B-cell receptor (BCR) signaling is a key determinant of variable clinical behavior and a target for therapeutic interventions in chronic lymphocytic leukemia (CLL). Endogenously produced HO is thought to fine-tune the BCR signaling by reversibly inhibiting phosphatases. However, little is known about how CLL cells sense and respond to such redox cues and what effect they have on CLL.

View Article and Find Full Text PDF

The TCMP-1 and TCMP-2 genes of tomato code for metallocarboxypeptidase inhibitors and show sequential, tightly regulated expression patterns during flower and fruit development. In particular, TCMP-1 is highly expressed in flower buds before anthesis, while TCMP-2 in ripe fruits. Their expression pattern suggests that they might play a role in fruit development.

View Article and Find Full Text PDF

Hypoxia is central to tumour evolution, growth, invasion and metastasis. Mathematical models of hypoxia based on reaction-diffusion equations provide seemingly incomplete descriptions as they fail to predict the measured oxygen concentrations in the tumour microenvironment. In an attempt to explain the discrepancies, we consider both the inhomogeneous distribution of oxygen-consuming cells in solid tumours and the dynamics of blood flow in the tumour microcirculation.

View Article and Find Full Text PDF

Astaxanthin is a carotenoid known for its strong antioxidant and health-promoting characteristics, but it is also highly degradable and thus unsuited for several applications. We developed a sustainable method for the extraction and the production of stable astaxanthin microencapsulates. Nearly 2% astaxanthin was extracted by high-pressure homogenization of dried Haematococcus pluvialis cells in soybean oil.

View Article and Find Full Text PDF

The cystine-knot miniproteins present in tomato fruit (TCMPs) have been shown to exert anti-angiogenic effects by inhibiting endothelial cell migration and to display resistance to gastrointestinal proteolytic attack. To better define the pharmacological potential of TCMPs, their oral bioavailability and their resistance to industrial processing must be assessed. To explore the intestinal transport of TCMPs we used the differentiated Caco-2 cells model.

View Article and Find Full Text PDF

Macromolecular crowding is a distinctive feature of the cellular interior, influencing the behaviour of biomacromolecules. Despite significant advancements in the description of the effects of crowding on global protein properties, the influence of cellular components on local protein attributes has received limited attention. Here, we describe a residue-level systematic interrogation of the structural, dynamic, and binding properties of the liver fatty acid binding protein (LFABP) in crowded solutions.

View Article and Find Full Text PDF