Publications by authors named "Chifiriuc M"

Gene expression assays that are based on quantitative real-time PCR (qRT-PCR) method are still very popular, therefore, we developed qDATA, an open-source R-based bioinformatics application that offers a quick and intuitive analysis of raw cycle threshold (Ct) values. The application relies on a straightforward data input consisting in Ct values and on other mandatory fields specifying the experimental and control groups. qDATA automatically performs descriptive statistics, normality and statistical testing on 2 (or ΔCt) and 2 terms calculated with Livak's method.

View Article and Find Full Text PDF

Since the discovery of lanthanides, the expanding range of applications and the growing demand for lanthanides in different aspects of life have escalated their dispersion in the environment, raising concerns about their impact on the living world. This review explores the interaction between lanthanides and different groups of living organisms (bacteria, algae, lichens, plants, invertebrates, and low vertebrates), reflecting the current state of scientific knowledge. We have aimed to provide a comprehensive overview of relevant studies, highlight existing gaps, and suggest potential areas for future research to enhance the understanding of this topic.

View Article and Find Full Text PDF

Lanthanides, a group of elements with unique chemical properties, have garnered significant attention for their varied biological effects, ranging from cytotoxic to protective, depending on concentration, cell type, and exposure conditions. This review provides a detailed examination of the biological interactions of lanthanides with mammalian systems, including humans, by exploring their impact on different cell lines and organisms. Through a systematic assessment of current research, this work highlights the dual nature of lanthanides, identifying them as both potential therapeutic agents and environmental toxins.

View Article and Find Full Text PDF

Methotrexate (MTX) is a folic acid antagonist routinely used in cancer treatment, characterized by poor water solubility and low skin permeability. These issues could be mitigated by using drug delivery systems, such as functionalized gold nanoparticles (AuNPs), known for their versatility and unique properties. This study aimed to develop multi-shell AuNPs functionalized with MTX for the improvement of MTX antitumoral, antioxidant, and biocompatibility features.

View Article and Find Full Text PDF

, a notorious opportunistic pathogen, presents a formidable challenge in both clinical and environmental fields due to its resilience and ability to acquire resistance. This study undertook a comprehensive analysis of 183 isolates collected between 2019 and 2022 from intra-hospital infections (IHI), hospital sewages (Hs), wastewater treatment plants (WWTP), and adjacent river waters from two Southern cities, focusing on their resistome, virulome, and mobilome through isolation on chromogenic media, identification by MALDI-TOF-MS and antibiotic susceptibility testing by disk diffusion) followed by genotypic characterization [Whole Genome Sequencing (WGS), 3rd generation sequencing through the MinION (ONT) platform, pangenome description, and respectively horizontal gene transfer through conjugation assays]. Our findings reveal significant genomic plasticity and the prevalence of high-risk international clones, underlining the potential of these isolates to act as reservoirs for antibiotic resistance genes (ARGs) that could be dynamically exchanged between clinical and environmental settings through mobile genetic elements (MGEs) such as the pMAL1 plasmids and the critical role of WWTPs in the persistence and spread of .

View Article and Find Full Text PDF

Selecting the appropriate disinfectant to control and prevent healthcare-associated infections (HAIs) is a challenging task for environmental health experts due to the large number of available disinfectant products. This study aimed to develop a label-free flow cytometry (FCM) method for the rapid evaluation of bactericidal activity and to compare its efficacy with that of standard qualitative/quantitative suspension tests. The bactericidal efficiency of eight commercial disinfectants containing quaternary ammonium compounds (QACs) was evaluated against four strains recommended by EN 13727 (, , , ) and four multidrug-resistant pathogens.

View Article and Find Full Text PDF

The substantial heterogeneity exhibited by head and neck cancer (HNC), encompassing diverse cellular origins, anatomical locations, and etiological contributors, combined with the prevalent late-stage diagnosis, poses significant challenges for clinical management. Genomic sequencing endeavors have revealed extensive alterations in key signaling pathways that regulate cellular proliferation and survival. Initiatives to engineer therapies targeting these dysregulated pathways are underway, with several candidate molecules progressing to clinical evaluation phases, including FDA approval for agents like the EGFR-targeting monoclonal antibody cetuximab for K-RAS wild-type, EGFR-mutant HNSCC treatment.

View Article and Find Full Text PDF
Article Synopsis
  • Cancer is a complex and aggressive disease that poses a significant health threat, linked to various factors like genetics, lifestyle, and environmental influences.
  • Patients undergoing treatment often face immunosuppression, making them vulnerable to infections that can accelerate tumor growth.
  • Recent research emphasizes the crucial role of microbiota in cancer progression and treatment response, highlighting their potential to enhance or interfere with anticancer therapies.
View Article and Find Full Text PDF

One of the well-known postoperative complications that requires a number of prophylactic and curative treatments is infection. The implications of postsurgical infections are further exacerbated by the emergence of antibiotic-resistant strains. Reduced effectiveness of synthetic antibiotics has led to an interest in plant-based substances.

View Article and Find Full Text PDF

One of the biggest health challenges of today's world is the emergence of antimicrobial resistance (AMR), which renders conventional therapeutics insufficient and urgently demands the generation of novel antimicrobial strategies. Mycobacterium tuberculosis (M. tuberculosis), the pathogen causing tuberculosis (TB), is among the most successful bacteria producing drug-resistant infections.

View Article and Find Full Text PDF

Chronic wounds represent one of the complications that might occur from the disruption of wound healing process. Recently, there has been a rise in interest in employing nanotechnology to develop novel strategies for accelerating wound healing. The aim of the present study was to use a green synthesis method to obtain AgNPs/NaLS systems useful for wounds management and perform an in-depth investigation of their behavior during and post-synthesis as well as of their biological properties.

View Article and Find Full Text PDF

Mammalians sense antigenic messages from infectious agents that penetrate the respiratory and digestive epithelium, as well as signals from damaged host cells through membrane and cytosolic receptors. The transduction of these signals triggers a personalized response, depending on the nature of the stimulus and the host's genetics, physiological condition, and comorbidities. Interferons (IFNs) are the primary effectors of the innate immune response, and their synthesis is activated in most cells within a few hours after pathogen invasion.

View Article and Find Full Text PDF

In the present study, sage-coated zinc-doped hydroxyapatite was incorporated into a dextran matrix (7ZnHAp-SD), and its physico-chemical and antimicrobial activities were investigated. A 7ZnHAp-SD nanocomposite suspension was obtained using the co-precipitation method. The stability of the nanocomposite suspension was evaluated using ultrasound measurements.

View Article and Find Full Text PDF

Malignant fungating wounds (MFW) are severe skin conditions generating tremendous distress in oncological patients with advanced cancer stages because of pain, malodor, exudation, pruritus, inflammation, edema, and bleeding. The classical therapeutic approaches such as surgery, opioids, antimicrobials, and application of different wound dressings are failing in handling pain, odor, and infection control, thus urgently requiring the development of alternative strategies. The aim of this review was to provide an update on the current therapeutic strategies and the perspectives on developing novel alternatives for better malignant wound management.

View Article and Find Full Text PDF

Head and neck cancer (HNC) is the sixth most common type of cancer, with more than half a million new cases annually. This review focuses on the role of oral dysbiosis and HPV infection in HNCs, presenting the involved taxons, molecular effectors and pathways, as well as the HPV-associated particularities of genetic and epigenetic changes and of the tumor microenvironment occurred in different stages of tumor development. Oral dysbiosis is associated with the evolution of HNCs, through multiple mechanisms such as inflammation, genotoxins release, modulation of the innate and acquired immune response, carcinogens and anticarcinogens production, generation of oxidative stress, induction of mutations.

View Article and Find Full Text PDF

The use of MAPLE synthesized thin films based on BG and VD3 for improving the osseointegration and corrosion protection of Ti-like implant surfaces is reported. The distribution of chemical elements and functional groups was shown by FTIR spectrometry; the stoichiometry and chemical functional integrity of thin films after MAPLE deposition was preserved, optimal results being revealed especially for the BG+VD3_025 samples. The morphology and topography were examined by SEM and AFM, and revealed surfaces with many irregularities, favoring a good adhesion of cells.

View Article and Find Full Text PDF

This is the first report on an efficient, "environmentally friendly" chemical reduction method for the synthesis of aminated hyaluronic acid-based silver nanoparticles on the modified surface of titanium dioxide nanoparticles aimed for biological applications. Silver nanoparticles exhibit well-known physical-chemical and optical properties appropriate for different biological applications. Modifying the nanoparticles leads to a change in their expected bioactivity.

View Article and Find Full Text PDF

Urban wastewater treatment plants harbor a large collection of antibiotic resistant enteric bacteria. It is therefore reasonable to hypothesize that workers at such plants would possess a more diverse set of resistant enteric bacteria, compared to the general population. To address this hypothesis, we have compared the fecal microbiome and resistome of 87 workers at wastewater treatment plants (WWTPs) from Romania and the Netherlands to those of 87 control individuals, using shotgun metagenomics.

View Article and Find Full Text PDF

Introduction: One of the promising leads for the rapid discovery of alternative antimicrobial agents is to repurpose other drugs, such as nonsteroidal anti-inflammatory agents (NSAIDs) for fighting bacterial infections and antimicrobial resistance.

Methods: A series of new carbazole derivatives based on the readily available anti-inflammatory drug carprofen has been obtained by nitration, halogenation and N-alkylation of carprofen and its esters. The structures of these carbazole compounds were assigned by NMR and IR spectroscopy.

View Article and Find Full Text PDF

Diabetic wounds are one of the most challenging clinical conditions in diabetes, necessitating the development of new treatments to foster healing and prevent microbial contamination. In this study, polyvinyl alcohol was used as a matrix polymer, and amoxicillin (AMX) and salicylic acid (SA) were selected as bioactive compounds with antimicrobial (with AMX) and anti-inflammatory action (with SA) to obtain innovative drug-loaded electrospun nanofiber patches for the management of diabetic wounds. Scanning electron microscope images revealed the uniform and beadless structure of the nanofiber patches.

View Article and Find Full Text PDF

A series of new hybrid molecules with two iodine atoms on the sides were synthesized. A one-pot, two-component method with trifluoroacetic acid as an effective catalyst to obtain dihydro-pyrrol-2-one compounds was developed. Short reaction times, a cheap catalyst, high yields and clean work-up are benefits of this method.

View Article and Find Full Text PDF

Antibiotics are an essential tool of modern medicine, contributing to significantly decreasing mortality and morbidity rates from infectious diseases. However, persistent misuse of these drugs has accelerated the evolution of antibiotic resistance, negatively impacting clinical practice. The environment contributes to both the evolution and transmission of resistance.

View Article and Find Full Text PDF