Publications by authors named "Chien-Sheng Lu"

Type-I hypersensitivity reactions play a critical role in the pathogenesis of various allergic diseases. The successful development of the anti-IgE antibody, omalizumab, has validated IgE as an effective therapeutic target for the treatment of various IgE-mediated allergic diseases. Two research groups have reported that mAbs specific for certain parts of CɛmX, a domain of 52 aa residues in human membrane-bound IgE (mIgE), can cause the lysis of mIgE-B cells by apoptosis and antibody-dependent cellular cytotoxicity (ADCC).

View Article and Find Full Text PDF

Membrane-bound IgA (mIgA) is associated with Igα/Igβ as the B cell receptor (BCR) complex on mIgA-expressing B cells. The α chain of mIgA (mα) contains a C-terminal membrane-anchor peptide, which encompasses extracellular, transmembrane and intracellular segments. The extracellular segment, referred to as the mIg isotype-specific (migis-α) segment or the extracellular membrane proximal domain of mα, has been proposed to be a specific antigenic site suitable for isotype-specific targeting of mIgA-expressing B cells by antibodies.

View Article and Find Full Text PDF

Several three-dimensional quantitative structure-activity relationship (3D-QSAR) models have been constructed using the comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), and catalyst pharmacophore feature building programs for a series of 26 truncated ketoacid inhibitors designed particularly for exploring the P2 and P3 binding pockets of HCV NS3 protease. The structures of these inhibitors were built from a structure template extracted from the crystal structure of HCV NS3 protease. The structures were aligned through docking each inhibitor into the NS3 active site using program GOLD.

View Article and Find Full Text PDF