This study investigated the disinfection efficiency of a photoreactor equipped with a helical water flow channel and ultraviolet-C (UV-C) light emitting diodes (LEDs). Theoretical simulations and biodosimetry tests were conducted to investigate the effects of coil diameter and flow rate on the reactor's performance in inactivating . The interplay between hydrodynamics and UV radiation was analyzed to determine the UV fluence absorbed by the microbes.
View Article and Find Full Text PDFIn this study, the effect of baffle configuration on the water disinfection efficiency of a planar photoreactor equipped with ultraviolet C light-emitting diodes (UV-C LEDs) was investigated. The results indicated that the configuration of the baffles influenced the hydrodynamics inside the flow channel and thus affected the microbial trajectory, and exposure time. Accordingly, a modified serpentine configuration was developed to enhance the UV light exposure of microbes in water and improve the reactor performance for microbial inactivation.
View Article and Find Full Text PDFEnviron Technol
September 2023
The use of ultraviolet-C (UV-C) light-emitting diodes (LEDs) as a water sterilization light source poses a serious challenge in heat dissipation. High junction temperatures reduce the radiant power and lifespan of UV-C LEDs. In this study, a novel self-cooling water disinfection reactor was developed to dissipate Joule heat from UV-C LEDs.
View Article and Find Full Text PDFNanoscale Res Lett
January 2022
An on-wafer micro-detector for in situ EUV (wavelength of 13.5 nm) detection featuring FinFET CMOS compatibility, 1 T pixel and battery-less sensing is demonstrated. Moreover, the detection results can be written in the in-pixel storage node for days, enabling off-line and non-destructive reading.
View Article and Find Full Text PDFA multifunctional ion-sensitive floating gate Fin field-effect transistor (ISFGFinFET) for hydrogen and sodium detection is demonstrated. The ISFGFinFET comprises a FGFET and a sensing film, both of which are used to detect and improve sensitivity. The sensitivity of the ISFGFinFET can be adjusted by modulating the coupling effect of the FG.
View Article and Find Full Text PDFA novel in situ imaging solution and detectors array for the focused electron beam (e-beam) are the first time proposed and demonstrated. The proposed in-tool, on-wafer e-beam detectors array features full FinFET CMOS logic compatibility, compact 2 T pixel structure, fast response, high responsivity, and wide dynamic range. The e-beam imaging pattern and detection results can be further stored in the sensing/storage node without external power supply, enabling off-line electrical reading, which can be used to rapidly provide timely feedback of the key parameters of the e-beam on the projected wafers, including dosage, accelerating energy, and intensity distributions.
View Article and Find Full Text PDFThe UV-C light emitting diode (LED) has shown numerous advantages over the traditional UV mercury lamp for water sterilization applications. Multi-chip LED array was used to provide sufficient UV fluence for bacteria inactivation in limited time. According to the point light source characteristic of LEDs, the arrangement of LEDs in the batch reactor is crucial to optimize the inactivation efficiency.
View Article and Find Full Text PDFIn this work, we present a novel pH sensor using efficient laterally coupled structure enabled by Complementary Metal-Oxide Semiconductor (CMOS) Fin Field-Effect Transistor (FinFET) processes. This new sensor features adjustable sensitivity, wide sensing range, multi-pad sensing capability and compatibility to advanced CMOS technologies. With a self-balanced readout scheme and proposed corresponding circuit, the proposed sensor is found to be easily embedded into integrated circuits (ICs) and expanded into sensors array.
View Article and Find Full Text PDFBackground: Many molecules and signaling pathways involved in neural development play a role in neurodegenerative diseases and brain tumor progression. Peroxisome proliferator-activated receptor (PPAR) proteins regulate the differentiation of tissues and the progression of many diseases. However, the role of these proteins in neural development is unclear.
View Article and Find Full Text PDFWe propose the output power measurement of bare-wafer/chip light-emitting diodes (LEDs) using a large-area silicon (Si) photodiode with a simple structure and high accuracy relative to the conventional partial flux measurement using an integrating sphere. To obtain the optical characteristics of the LED chips measured using the two methods, three-dimensional ray-trace simulations are used to perform the measurement deviations owing to the chip position offset or tilt angle. The ray-tracing simulation results demonstrate that the deviation of light remaining in the integrating sphere is approximately 65% for the vertical LED chip and 53% for the flip-chip LED chip if the measurement distance in partial flux method is set to be 5-40 mm.
View Article and Find Full Text PDF