Publications by authors named "Chien-Ping Lee"

Photonic-crystal (PC) surface-emitting lasers (SELs) with double-hole structure in the square-lattice unit cell were fabricated on GaSb-based type-I InGaAsSb/AlGaAsSb heterostructures. The relative shift of two holes was varied within one half of the lattice period. We measured the lasing wavelengths and threshold pumping densities of 16 PC-SELs and investigated their dependence on the double-hole shift.

View Article and Find Full Text PDF

We study the effect of etching depth on the threshold characteristics of GaSb-based middle infrared (Mid-IR) photonic-crystal surface-emitting lasers (PCSELs) with different lattice periods. The below-threshold emission spectra are measured to identify the bandgap as well as band-edge modes. Moreover, the bandgap separation widens with increasing etching depth as a result of enhanced diffraction feedback coupling.

View Article and Find Full Text PDF

We demonstrate fluorescent Fe embedded magnetic nanodiamonds by ion implantation and two-step annealing. The diamond characteristics with a highly ordered core and a graphite surface layer are maintained after the implantation process. After the two-step annealing process, a bright red fluorescence associated with nitrogen-vacancy centers is observed.

View Article and Find Full Text PDF

This paper discusses the issue of controlling the epitaxial growth of mixed group V alloys to form a type-I InGaAsSb/AlGaAsSb double quantum wells (QWs) structure. We also discuss the run-to-run reproducibility of lattice-matched AlGaAsSb alloys and strained InGaAsSb in terms of growth parameters (V/III ratio, Sb₂/As₂ ratio). Molecular beam epitaxy (MBE) was used to grow two type-I InGaAsSb double-QWs laser structures differing only in the composition of the bottom cladding layer: AlGaAsSb (sample A) and AlGaAsSb (sample B).

View Article and Find Full Text PDF
Article Synopsis
  • The paper presents a novel MRI contrast agent made from magnetic nanodiamonds enhanced by Fe ion implantation, which shows significant image enhancement without causing toxicity to cells.* -
  • The new contrast agent demonstrates a relaxivity value about seven times greater than standard non-magnetic nanodiamonds, leading to clearer T2 weighted images.* -
  • This technology opens up potential medical applications where magnetic nanodiamonds can be combined with other therapeutic functions for advanced treatments like drug delivery and localized therapies.*
View Article and Find Full Text PDF

A novel method of detection wavelength tuning for surface plasmon coupled quantum well infrared photodetectors (QWIPs) was demonstrated. By changing of the thickness of the top contact layer, the detection wavelength can be adjusted. The displacement of the detection wavelength is related to the effective dielectric constant of the dielectric layers in the device structure.

View Article and Find Full Text PDF

We demonstrated for the first time above room temperature (RT) GaSb-based mid-infrared photonic crystal surface emitting lasers (PCSELs). The lasers, under optical pumping, emitted at λ(lasing)~2.3μm, had a temperature insensitive line width of 0.

View Article and Find Full Text PDF

We report on the design and implementation of a spectral ellipsometer at near-infrared wavelength (700-1000 nm) for samples placed in high magnetic fields (up to 14 T) at low temperatures (~4.2 K). The main optical components are integrated in a probe, which can be inserted into a conventional long-neck He dewar and has a very long free-space optical path (~1.

View Article and Find Full Text PDF
Article Synopsis
  • A planar p-i-n light emitting diode was created using undoped GaAs/AlGaAs quantum wells and standard lithography techniques.
  • The device features a twin gate design, allowing for the close placement of two-dimensional electron and hole gases.
  • The electroluminescence shows high stability and distinct transition peaks, making it a strong candidate for electrically-driven single photon source applications.*
View Article and Find Full Text PDF

Monolithic passively mode-locked quantum dot lasers with excited-state transition were investigated in a broad operating range without ground-state lasing. Optical and electrical characteristics of these mode locked lasers were studied in detail at different levels of injection current and absorber bias. Very different behaviors in the evolution of the hysteresis, the optical spectra and the evolution of repetition frequency were observed between our lasers and conventional quantum dot lasers with ground-state transition.

View Article and Find Full Text PDF

We report voltage-tunable 3-5 μm & 8-12 μm dual-band detection in the InAs/Al0.3Ga0.7As/In0.

View Article and Find Full Text PDF

In this report, the influence of the intrinsic transitions between bound-to-delocalized states (crossed states or quasicontinuous density of electron-hole states) on photoluminescence excitation (PLE) spectra of InAs quantum dots (QDs) was investigated. The InAs QDs were different in size, shape, and number of bound states. Results from the PLE spectroscopy at low temperature and under a high magnetic field (up to 14 T) were compared.

View Article and Find Full Text PDF

We report on the diamagnetic responses of different exciton complexes in single InAs/GaAs self-assembled quantum dots (QDs) and quantum rings (QRs). For QDs, the imbalanced magnetic responses of inter-particle Coulomb interactions play a crucial role in the diamagnetic shifts of excitons (X), biexcitons (XX), and positive trions (X-). For negative trions (X-) in QDs, anomalous magnetic responses are observed, which cannot be described by the conventional quadratic energy shift with the magnetic field.

View Article and Find Full Text PDF

We report on spectral-domain and time-domain measurements and numerical calculations of group velocities in a photonic crystal coupled waveguide, where the unique guided mode band structure has a flat band region within the photonic band gap allowing for slow light observation. The spectral dependence of group velocity, which is measured by interference method, indicates the existence of slow light modes around the inflection point of the unique flat band, rather than at the band edge. Time-domain observation of optical pulses propagating along two-dimension slab photonic crystal coupled waveguides is also demonstrated by using a high speed oscilloscope.

View Article and Find Full Text PDF