Direct synthesis of a nano-structured carbon hybrid consisting of vertically aligned carbon nanograsses on top of boron-doped nanocrystalline diamond is demonstrated and the carbon hybrid is further applied as an electrode material for the fabrication of supercapacitors. The hybrid film combines the dual advantages of sp2 (carbon nanograss) and sp3 (nanocrystalline diamond) bonded carbon, possessing not only the excellent electrical characteristics of sp2 carbon but also the exceptional electrochemical stability of sp3 carbon. As a result, the specific capacitance of the as-prepared hybrid material reaches up to 0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2019
Electron emission signifies an important mechanism facilitating the enlargement of devices that have modernized large parts of science and technology. Today, the search for innovative electron emission devices for imaging, sensing, electronics, and high-energy physics continues. Integrating two materials with dissimilar electronic properties into a hybrid material is an extremely sought-after synergistic approach, envisioning a superior field electron emission (FEE) material.
View Article and Find Full Text PDFThe impact of lithium-ion implantation and postannealing processes on improving the electrical conductivity and field electron emission (FEE) characteristics of nitrogen-doped nanocrystalline diamond (nNCD) films was observed to be distinctly different from those of undoped NCD (uNCD) films. A high-dose Li-ion implantation induced the formation of electron trap centers inside the diamond grains and amorphous carbon (a-C) phases in grain boundaries for both types of NCD films. Postannealing at 1000 °C healed the defects, eliminated the electron trap centers, and converted the a-C into nanographitic phases.
View Article and Find Full Text PDFMicrostructural evolution of nanocrystalline diamond (NCD) nanoneedles owing to the addition of methane and nitrogen in the reactant gases is systematically addressed. It has been determined that varying the concentration of CH in the CH/H/N plasma is significant to tailor the morphology and microstructure of NCD films. While NCD films grown with 1% CH in a CH/H/N (3%) plasma contain large diamond grains, the microstructure changed considerably for NCD films grown using 5% (or 10%) CH, ensuing in nanosized diamond grains.
View Article and Find Full Text PDFThe present work reports the plasma post treatment (ppt) process that instigates the evolution of granular structure of nanocrystalline diamond (NCD), consequently conducing the enhancement of the electron field emission (EFE) properties. The NCD films contain uniform and nanosized diamond grains (∼20 nm) with negligible thickness for grain boundaries that is distinctly different from the microstructure of ultrananocrystalline (UNCD) films with uniformly sized ultrananodiamond grains (∼5 nm) having relatively thick grain boundaries (∼0.1 nm).
View Article and Find Full Text PDFCarbon nanomaterials such as nanotubes, nanoflakes/nanowalls, and graphene have been used as electron sources due to their superior field electron emission (FEE) characteristics. However, these materials show poor stability and short lifetimes, which prevent their use in practical device applications. The aim of this study was to find an innovative nanomaterial possessing both high robustness and reliable FEE behavior.
View Article and Find Full Text PDFFew-layer graphene (FLG) was catalytically formed on vertically aligned diamond nanorods (DNRs) by a high temperature annealing process. The presence of 4-5 layers of FLG on DNRs was confirmed by transmission electron microscopic studies. It enhances the field electron emission (FEE) behavior of the DNRs.
View Article and Find Full Text PDFPlasma post-treatment process was observed to markedly enhance the electron field emission (EFE) properties of ultrananocrystalline diamond (UNCD) films. TEM examinations reveal that the prime factor which improves the EFE properties of these films is the coalescence of ultrasmall diamond grains (∼5 nm) forming large diamond grains about hundreds of nanometers accompanied by the formation of nanographitic clusters along the grain boundaries due to the plasma post-treatment process. OES studies reveal the presence of large proportion of atomic hydrogen and C2 (or CH) species, which are the main ingredients that altered the granular structure of the UNCD films.
View Article and Find Full Text PDF