Protein complexes are fundamental to all cellular processes, so understanding their evolutionary history and assembly processes is important. Gene duplication followed by divergence is considered a primary mechanism for diversifying protein complexes. Nonetheless, to what extent assembly of present-day paralogous complexes has been constrained by their long evolutionary pathways and how cross-complex interference is avoided remain unanswered questions.
View Article and Find Full Text PDFDobzhansky-Muller incompatibilities represent a major driver of reproductive isolation between species. They are caused when interacting components encoded by alleles from different species cannot function properly when mixed. At incipient stages of speciation, complex incompatibilities involving multiple genetic loci with weak effects are frequently observed, but the underlying mechanisms remain elusive.
View Article and Find Full Text PDFBackground: Ciliates are an ancient and diverse eukaryotic group found in various environments. A unique feature of ciliates is their nuclear dimorphism, by which two types of nuclei, the diploid germline micronucleus (MIC) and polyploidy somatic macronucleus (MAC), are present in the same cytoplasm and serve different functions. During each sexual cycle, ciliates develop a new macronucleus in which newly fused genomes are extensively rearranged to generate functional minichromosomes.
View Article and Find Full Text PDF