Life cycle adaptation to seasonal variation in photoperiod and temperature is a major determinant of ecological success of widespread domestication of Arabidopsis thaliana. The circadian clock plays a role in the underlying mechanism for adaptation. Nevertheless, the mechanism by which the circadian clock tracks seasonal changes in photoperiod and temperature is a longstanding subject of research in the field.
View Article and Find Full Text PDFDuring the last decade, significant research progress has been made in Arabidopsis thaliana in defining the molecular mechanisms behind the plant circadian clock. The circadian clock must have the ability to integrate both external light and ambient temperature signals into its transcriptional circuitry to regulate its function properly. We previously showed that transcription of a set of clock genes including LUX (LUX ARRHYTHMO), GI (GIGANTEA), LNK1 (NIGHT LIGHT-INDUCIBLE AND CLOCK-REGULATED GENE 1), PRR9 (PSEUDO-RESPONSE REGULATOR 9) and PRR7 is commonly regulated through the evening complex (EC) night-time repressor in response to both moderate changes in temperature (Δ6°C) and differences in steady-state growth-compatible temperature (16-28°C).
View Article and Find Full Text PDF