Insect metamorphosis into an adult occurs after the juvenile hormone (JH) titer decreases at the end of the juvenile stage. This generally coincides with decreased transcript levels of JH-response transcription factors Krüppel homolog 1 (Kr-h1) and broad (br), and increased transcript levels of the adult specifier E93. Thrips (Thysanoptera) develop through inactive and non-feeding stages referred to as "propupa" and "pupa", and this type of distinctive metamorphosis is called neometaboly.
View Article and Find Full Text PDFInsect juvenile hormone (JH) mimics (JHMs) are known to have ovicidal effects if applied to adult females or eggs. Here, we examined the effects of exogenous JHMs on embryonic development of the bean bug, . The expression profiles of JH early response genes and JH biosynthetic enzymes indicated that JH titer was low for the first 3 days of the egg stage and increased thereafter.
View Article and Find Full Text PDFCurr Opin Insect Sci
February 2021
Metamorphosis undeniably shaped the evolutionary success of winged insects. So far, what we know about the hormonal regulation and molecular mechanisms controlling insect metamorphosis lies on the understanding of complete and incomplete metamorphosis. Rarer types of metamorphosis are overlooked, yet they could provide important insights as they represent deviations in life history strategies that are associated with unique ecological traits.
View Article and Find Full Text PDFInsect adult metamorphosis generally proceeds with undetectable levels of juvenile hormone (JH). In adult development of the red flour beetle Tribolium castaneum, biosynthesis of adult cuticle followed by its pigmentation and sclerotization occurs, and dark coloration of the cuticle becomes visible in pharate adults. Here, we examined the molecular mechanism of adult cuticular formation in more detail.
View Article and Find Full Text PDFInsect molting hormone (ecdysteroids) and juvenile hormone regulate molting and metamorphic events in a variety of insect species. Mealybugs undergo sexually dimorphic metamorphosis: males develop into winged adults through non-feeding, pupa-like stages called prepupa and pupa, while females emerge as neotenic wingless adults. We previously demonstrated, in the Japanese mealybug Planococcus kraunhiae (Kuwana), that the juvenile hormone titer is higher in males than in females at the end of the juvenile stage, which suggests that juvenile hormone may regulate male-specific adult morphogenesis.
View Article and Find Full Text PDFInsect juvenile hormone (JH) is well known to regulate post-embryonic development and reproduction in concert with ecdysteroids in a variety of insect species. In contrast, our knowledge on the role of JH in embryonic development is limited and inconsistent. Preceding studies indicate that JH biosynthesis or JH signaling genes are dispensable in holometabolous Drosophila melanogaster and Bombyx mori, while essential in hemimetabolous Blattella germanica.
View Article and Find Full Text PDFInsect metamorphosis produces reproductive adults and is commonly accompanied with the direct or indirect development of wings. In some winged insects, the imago is altered by life history changes. For instance, in scale insects and mealybugs, reproductive females retain juvenile features and are wingless.
View Article and Find Full Text PDFWe previously reported that the moderate knockdown of chitin synthase 1 gene of the model beetle Tribolium castaneum impairs the host defense against entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae, which infect host insects via the direct penetration of cuticular integuments (Hayakawa et al., 2017). In this study, we focused on the antifungal roles of laccase2 (Lac2) as well as yellow-e (Y-e) genes, both of which are shown to be important to the establishment of stable cuticular structures in this beetle species.
View Article and Find Full Text PDFWe examined the susceptibility of field strains (BO-1, BO-2, TO-1, and YH-1) and one laboratory strain (H-1) of the western flower thrip, , to benzoylureas. LC values of novaluron were determined as 0.64 ppm against laboratory strain and 2.
View Article and Find Full Text PDFThe importance of the insect cuticle as a primary protective barrier against entomopathogens has long been noted. In the present study, we addressed this issue by utilizing an experimental infection system composed of the model beetle T. castaneum and two entomopathogenic fungal species, Beauveria bassiana and Metarhizium anisopliae.
View Article and Find Full Text PDFScale insects have evolved extreme sexual dimorphism, as demonstrated by sedentary juvenile-like females and ephemeral winged males. This dimorphism is established during the post-embryonic development; however, the underlying regulatory mechanisms have not yet been examined. We herein assessed the role of juvenile hormone (JH) on the diverging developmental pathways occurring in the male and female Japanese mealybug Planococcus kraunhiae (Kuwana).
View Article and Find Full Text PDFIn this study, we characterized prophenoloxidase (proPO, (PPO)) genes of Tribolium castaneum and examined their involvement in antimicrobial host defense. Amino acid sequence comparison with well-characterized PPO proteins from other insect species suggested that T. castaneum PPO genes encoded functional proenzymes, with crucial sequence motifs being conserved.
View Article and Find Full Text PDFWe have previously demonstrated that the functional Toll and IMD innate immune pathways indeed exist in the model beetle, Tribolium castaneum while the beetle's pathways have broader specificity in terms of microbial activation than that of Drosophila. To elucidate the molecular basis of this broad microbial activation, we here focused on potential upstream sensors of the T. castaneum innate immune pathways, peptidoglycan recognition proteins (PGRPs).
View Article and Find Full Text PDFJuvenile hormone (JH) is synthesized and secreted by the corpora allata. In the final two steps of JH biosynthesis, farnesoic acid (FA) is converted to JH through methylation by JH acid O-methyltransferase (JHAMT) and epoxidation by the cytochrome P450 enzyme CYP15. In the present study, we identified a homolog of CYP15 from the red flour beetle Tribolium castaneum (TcCYP15A1), and analyzed its expression as well as its role in JH biosynthesis.
View Article and Find Full Text PDFThis study examined the acetylcholinesterase 1 gene (AChE1) in Plutella xylostella strains with different sensitivities to acephate. Multiple haplotypes of the gene were found in the field-collected strains including distinct haplotypes carrying one or both previously reported mutations (A298S and G324A). Moreover, sequencing results indicated the presence of duplicated copies of the gene in the field-collected strains.
View Article and Find Full Text PDFWe previously demonstrated that Tribolium castaneum antimicrobical peptide (AMP) genes can be classified to IMD-dependent group I, Toll-dependent group III and co-dependent group II genes besides non-inducible group IV. Here, we focused on NF-κB transcription factor genes, Dif1, Dif2 and Rel, and examined their functions in AMP gene induction as well as linkages to the Toll or IMD pathway. IMD-dependent group I and Toll-dependent group III genes were revealed to be Rel- and Dif-dependent respectively through knockdown experiments, indicating that the pathway specificity of NF-κB classes found in Drosophila is also conserved in T.
View Article and Find Full Text PDFThe Krüppel homolog 1 gene (Kr-h1) has been proposed to play a key role in the repression of insect metamorphosis. Kr-h1 is assumed to be induced by juvenile hormone (JH) via a JH receptor, methoprene-tolerant (Met), but the mechanism of induction is unclear. To elucidate the molecular mechanism of Kr-h1 induction, we first cloned cDNAs encoding Kr-h1 (BmKr-h1) and Met (BmMet1 and BmMet2) homologs from Bombyx mori.
View Article and Find Full Text PDFUsing Tribolium castaneum, we quantitatively investigated the induction of nine antimicrobial peptide (AMP) genes by live gram-negative bacteria (Escherichia coli and Enterobacter cloacae), gram-positive bacteria (Micrococcus luteus and Bacillus subtilis) and the budding yeast (Saccharomyces cerevisiae). Then, five representative AMP genes were selected, and the involvement of the Toll and IMD pathways in their induction by E. coli, M.
View Article and Find Full Text PDFIn holometabolous insects, Krüppel homolog 1 (Kr-h1) and broad (br) are key players in the juvenile hormone (JH) regulation of metamorphosis: Kr-h1 is an early JH-response gene, while br is a transcription factor that directs pupal development. Thrips (Thysanoptera) are classified as hemimetabolous insects that develop directly from nymph to adult, but they have quiescent and non-feeding stages called propupa and pupa. We analyzed the developmental profiles of br and Kr-h1 in the western flower thrips Frankliniella occidentalis (Thripidae) that has one propupal instar and one pupal instar, and Haplothrips brevitubus (Phlaeothripidae) that has one propupal instar and two pupal instars, i.
View Article and Find Full Text PDFJuvenile hormone (JH) prevents ecdysone-induced metamorphosis in insects. However, our knowledge of the molecular mechanisms of JH action is still fragmented. Krüppel homolog 1 (Kr-h1) is a JH-inducible transcription factor in Drosophila melanogaster (Minakuchi, C.
View Article and Find Full Text PDFJuvenile hormone controls the timing of insect metamorphosis. As a final step of juvenile hormone biosynthesis, juvenile hormone acid O-methyltransferase (JHAMT) transfers the methyl group from S-adenosyl-l-methionine to the carboxyl group of farnesoic acid and juvenile hormone acid. The developmental expression profiles of JHAMT mRNA in the silkworm Bombyx mori and the fruitfly Drosophila melanogaster suggest that the suppression of JHAMT transcription is critical for the induction of larval-pupal metamorphosis, but genetic evidence for JHAMT function in vivo is missing.
View Article and Find Full Text PDFJuvenile hormone (JH) given at pupariation inhibits bristle formation and causes pupal cuticle formation in the abdomen of Drosophila melanogaster due to its prolongation of expression of the transcription factor Broad (BR). In a microarray analysis of JH-induced gene expression in abdominal integument, we found that Krüppel homolog 1 (Kr-h1) was up-regulated during most of adult development. Quantitative real-time PCR analyses showed that Kr-h1 up-regulation began at 10h after puparium formation (APF), and Kr-h1 up-regulation occurred in imaginal epidermal cells, persisting larval muscles, and larval oenocytes.
View Article and Find Full Text PDFPartition coefficients of six 2-phenyl-1,3-oxazoline congeners containing 2-I, 2-NO2, 2-CF3, 2,6-(CH3)2, 2,6-F2, and 2-F-6-Cl substitutions on the phenyl moiety were measured in a 1-octanol/water system using the flask-shaking method. The effect on the hydrophobicity (LogP) of substituents on the phenyl moiety of 2-phenyl-1,3-oxazolines linearly correlated with that of benzamide congeners. logP values of other 2-(substituted phenyl)-1,3-oxazoline analogs were empirically estimated from the corresponding substituted benzamides.
View Article and Find Full Text PDFcDNA cloning of ecdysone receptor (EcR) and ultraspiracle (USP) of the coleopteran Colorado potato beetle Leptinotarsa decemlineata (LdEcR and LdUSP) was conducted. Amino-acid sequences of the proteins deduced from cDNA sequences showed striking homology to those of other insects, especially the coleopteran yellow mealworm Tenebrio molitor. Northern hybridization analysis showed a 12.
View Article and Find Full Text PDFThe activity of 52 diacylhydrazine congeners was evaluated by measuring the inhibition of the incorporation of [3H]ponasterone A into intact Sf-9 cells. Eleven compounds were newly synthesized in this study. Results showed that the substitution of the 2-CH3 or 3-OCH3 moiety of methoxyfenozide with other groups or the removal of either group was unfavorable to the activity.
View Article and Find Full Text PDF