The matrix metalloproteinases (MMPs) are well-known mediators that are activated in tumor progression. MMP2 is a kind of gelatinase in extracellular matrix remodeling and cancer metastasis processes. MMP2 secretion increased in many types of cancer diseases, and its abnormal expression is associated with a poor prognosis.
View Article and Find Full Text PDFPhotodynamic therapy (PDT) based on photosensitizers (PSs) constructed with nanomaterials has become popular in cancer treatment, especially oral carcinoma cell. This therapy is characterized by improved PS accumulation in tumor regions and generation of reactive oxygen species (ROS) for PDT under specific excitation. In the selection of near-infrared (NIR) window, 808 nm NIR light because it can avoid the absorption of water is particularly suitable for the application in PDT.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2016
Photodynamic therapy (PDT) based on photosensitizers (PSs) constructed with nanomaterials has been widely applied to treat cancer. This therapy is characterized by an improved PS accumulation in tumor regions. However, challenges, such as short penetration depth of light and low extinction coefficient of PSs, limit PDT applications.
View Article and Find Full Text PDFPhotodynamic therapy (PDT) is a promising antitumor treatment that is based on photosensitizers. This therapy kills cancer cells by generating reactive oxygen species (ROS) after irradiation with specific laser wavelengths. Being a potential photosensitizer, graphitic carbon nitride (g-CN) quantum dots (QDs) are noncytotoxic.
View Article and Find Full Text PDFUpconversion nanoparticles (UCNPs) have extensive biological-applications because of their bio-compatibility, tunable optical properties and their ability to be excited by infrared radiation. Matrix metalloproteinases (MMPs) play important roles in extracellular matrix remodelling; they are usually found to significantly increase during cancer progression, and these increases may lead to poor patient survival. In this study, we produced a biosensor that can be recognized by MMP2 and then be unravelled by the attached quencher to emit visible light.
View Article and Find Full Text PDFTitanium dioxide (TiO) nanomaterials (NMs) have been widely used to develop commercial products such as sunscreen cosmetics because of their unique optical properties to provide complete protection from ultraviolet (UV) light. The most dangerous type of UV radiation is UVA, which comprises nearly 97% of the UV radiation that reaches the Earth. This type of radiation is also the major cause of skin damage.
View Article and Find Full Text PDFNanocomposites consisting of upconversion nanoparticles (UCPs) and plasmonic materials have been widely explored for bio-imaging and cancer photothermal therapy (PTT). However, several challenges, including incomprehensible efficiency of energy transfer processes and optimization of the conditions for plasmon-induced photothermal effects, still exist. In this study, we fabricated NaYF:Yb/Er nanoparticles (NPs) conjugated with gold nanomaterials (Au NMs), such as Au NPs and gold nanorods (Au NRs).
View Article and Find Full Text PDFIn this study we measured the degrees to which the Schottky barrier heights (SBHs) are lowered in ZnO nanowire (NW) devices under illumination with UV light. We measured the I-V characteristics of ZnO nanowire devices to confirm that ZnO is an n-type semiconductor and that the on/off ratio is approximately 10(4). From temperature-dependent I-V measurements we obtained a SBH of 0.
View Article and Find Full Text PDFExploiting the reactivity of the P-atom of phosphole-based oligomers, we have achieved access to the first organophosphorus-containing organic light-emitting diode (OLED) materials. The versatility of these P-materials is demonstrated with the synthesis of a corresponding gold complex that has also been used as an OLED material. Optimization of the OLED devices by doping the phosphole layer with a red fluorescent dye is described.
View Article and Find Full Text PDFA new class of highly stable furan-based hole transporting oligomeric materials, synthesized from the corresponding propargylic dithioacetals, serve as efficient hole transporting materials in electroluminescent devices. The performance of the devices using these furan materials is comparable with or somewhat better than those employing the conventional triarylamines (e.g.
View Article and Find Full Text PDF