The NLRP3 inflammasome is an essential component of the innate immune system, but excessive activation can lead to inflammatory diseases. Ion fluxes across the plasma membrane or from intracellular stores are known to regulate NLRP3 inflammasome activation. Deep-sea water (DSW) contains high concentrations of many mineral ions, which could potentially influence NLRP3 inflammasome activation.
View Article and Find Full Text PDFBackground: Controlling the asymmetric distribution of phospholipids across biological membranes plays a pivotal role in the life cycle of cells; one of the most important contributors that maintain this lipid asymmetry are phospholipid-transporting adenosine triphosphatases (ATPases). Although sufficient information regarding their association with cancer exists, there is limited evidence linking the genetic variants of phospholipid-transporting ATPase family genes to prostate cancer in humans.
Methods: In this study, we investigated the association of 222 haplotype-tagging single-nucleotide polymorphisms (SNPs) in eight phospholipid-transporting ATPase genes with cancer-specific survival (CSS) and overall survival (OS) of 630 patients treated with androgen-deprivation therapy (ADT) for prostate cancer.
The nucleotide-binding and oligomerization domain, leucine-rich repeats, and pyrin domain-containing protein 3 (NLRP3) inflammasome plays a crucial role in innate immunity and is involved in the pathogenesis of autoinflammatory diseases. Glycolysis regulates NLRP3 inflammasome activation in macrophages. However, how lactic acid fermentation and pyruvate oxidation controlled by the mitochondrial pyruvate carrier (MPC) affect NLRP3 inflammasome activation and autoinflammatory disease remains elusive.
View Article and Find Full Text PDFAdenosine deaminase acting on RNA (ADAR)-catalyzed adenosine-to-inosine RNA editing is potentially dysregulated in neoplastic progression. However, how this transcriptome recoding process is functionally correlated with tumorigenesis remains largely elusive. Our analyses of RNA editome datasets identify hypoxia-related genes as A-to-I editing targets.
View Article and Find Full Text PDFProcessing of the eukaryotic transcriptome is a dynamic regulatory mechanism that confers genetic diversity, and splicing and adenosine to inosine (A-to-I) RNA editing are well-characterized examples of such processing. Growing evidence reveals the cross-talk between the splicing and RNA editing, but there is a paucity of substantial evidence for its mechanistic details and contribution in a physiological context. Here, our findings demonstrate that tumor-associated differential RNA editing, in conjunction with splicing machinery, regulates the expression of variants of , a gene encoding splicing factor.
View Article and Find Full Text PDFAdenosine-to-inosine RNA editing constitutes a crucial component of the cellular transcriptome and critically underpins organism survival and development. While recent high-throughput approaches have provided comprehensive documentation of the RNA editome, its functional output remains mostly unresolved, particularly for events in the non-coding regions. Gene ontology analysis of the known RNA editing targets unveiled a preponderance of genes related to apoptosis regulation, among which proto-oncogenes XIAP and MDM2 encode two the most abundantly edited transcripts.
View Article and Find Full Text PDFCellular senescence is a permanent proliferative arrest triggered by genome instability or aberrant growth stresses, acting as a protective or even tumor-suppressive mechanism. While several key aspects of gene regulation have been known to program this cessation of cell growth, the involvement of the epigenetic regulation has just emerged but remains largely unresolved. Using a systems approach that is based on targeted gene profiling, we uncovered known and novel chromatin modifiers with putative link to the senescent state of the cells.
View Article and Find Full Text PDF