Safe autonomous vehicle (AV) operations depend on an accurate perception of the driving environment, which necessitates the use of a variety of sensors. Computational algorithms must then process all of this sensor data, which typically results in a high on-vehicle computational load. For example, existing lane markings are designed for human drivers, can fade over time, and can be contradictory in construction zones, which require specialized sensing and computational processing in an AV.
View Article and Find Full Text PDFLarger vehicles, such as sports utility vehicles, consume more energy than cars. Their increasing popularity runs contrary to the goal of fuel economy regulations to reduce fossil fuel consumption and greenhouse gas emissions and can be explained by consumer preference and lower regulation stringency, which is due to footprint, truck classification, and the omission of heterogenous lifetime vehicle distance traveled among vehicle classes. This study shows that, for both the US and China, large vehicles travel more, last longer, and are owned by higher income consumers.
View Article and Find Full Text PDF