Publications by authors named "Chie Shimamoto"

The present study describes the hair growth-promoting effects of sodium thiosulfate (STS), a widely used compound, in mice. STS accelerated hair growth in the "telogen model", suggesting that it stimulates telogen hair follicles to reenter the anagen phase of hair growth. In the same model, STS potentiated hair growth in an additive manner with minoxidil (MXD), a drug used for the treatment of androgenic alopecia.

View Article and Find Full Text PDF

Involvement of the gamma-aminobutyric acid (GABA)-ergic system in schizophrenia pathogenesis through disrupted neurodevelopment has been highlighted in numerous studies. However, the function of common genetic variants of this system in determining schizophrenia risk is unknown. We therefore tested the association of 375 tagged SNPs in genes derived from the GABAergic system, such as GABA receptor subunit genes, and GABA related genes (glutamate decarboxylase genes, GABAergic-marker gene, genes involved in GABA receptor trafficking and scaffolding) in Japanese schizophrenia case-control samples (n=2926; 1415 cases and 1511 controls).

View Article and Find Full Text PDF

Background: Genes responsible for reduced pigmentation phenotypes in rodents are associated with human developmental defects, such as Waardenburg syndrome, where patients display congenital deafness along with various abnormalities mostly related to neural crest development deficiency.

Objective: In this study, we identified a spontaneous mutant mouse line Rwa, which displays variable white spots on mouse bellies and white digits and tail, on a C57BL/6N genetic background. Curly tail and spina bifida were also observed, although at a lower penetrance.

View Article and Find Full Text PDF
Article Synopsis
  • - The SLC27A gene family, which includes 6 fatty acid transport proteins, may play a role in autism spectrum disorders (ASD) due to their importance in brain development during fetal and postnatal stages.
  • - Researchers confirmed the expression of SLC27A3 and SLC27A4 in human neural stem cells and found numerous genetic variants in these genes among ASD patients, suggesting they might be linked to the disorder.
  • - A specific variant of the SLC27A4 gene (Ser209) showed increased fatty acid uptake in brain cells, indicating that changes in this gene might affect brain development and contribute to the pathophysiology of ASD.
View Article and Find Full Text PDF

Fatty acid binding protein 7 (FABP7) expressed by astrocytes in developing and mature brains is involved in uptake and transportation of fatty acids, signal transduction, and gene transcription. Fabp7 knockout (Fabp7 KO) mice show behavioral phenotypes reminiscent of human neuropsychiatric disorders such as schizophrenia. However, direct evidence showing how FABP7 deficiency in astrocytes leads to altered brain function is lacking.

View Article and Find Full Text PDF

Background: Identifying beneficial surrogate genetic markers in psychiatric disorders is crucial but challenging.

Methods: Given that scalp hair follicles are easily accessible and, like the brain, are derived from the ectoderm, expressions of messenger RNA (mRNA) and microRNA in the organ were examined between schizophrenia (n for first/second = 52/42) and control subjects (n = 62/55) in two sets of cohort. Genes of significance were also analyzed using postmortem brains (n for case/control = 35/35 in Brodmann area 46, 20/20 in cornu ammonis 1) and induced pluripotent stem cells (n = 4/4) and pluripotent stem cell-derived neurospheres (n = 12/12) to see their role in the central nervous system.

View Article and Find Full Text PDF

Background: Histone H3 methylation at lysine 9 (H3K9) is a conserved epigenetic signal, mediating heterochromatin formation by trimethylation, and transcriptional silencing by dimethylation. Defective GLP (Ehmt1) and G9a (Ehmt2) histone lysine methyltransferases, involved in mono and dimethylation of H3K9, confer autistic phenotypes and behavioral abnormalities in animal models. Moreover, EHMT1 loss of function results in Kleefstra syndrome, characterized by severe intellectual disability, developmental delays and psychiatric disorders.

View Article and Find Full Text PDF
Article Synopsis
  • Lipid metabolism disruptions are linked to psychiatric disorders, with a specific focus on the fatty acid binding proteins (FABPs) associated with schizophrenia and autism spectrum disorder (ASD).
  • Researchers found altered expression of FABP5 in schizophrenia and FABP7 in ASD, as well as mutations in FABP genes among patients, suggesting these changes could affect disease development.
  • Behavioral tests on mice lacking these FABPs showed varying outcomes, indicating that deficiencies in these proteins could contribute to social and anxiety-related behaviors common in these psychiatric conditions.
View Article and Find Full Text PDF

Disruption of synaptic networks has been advocated in the pathogenesis of psychiatric diseases like schizophrenia. The majority of synaptic proteins involved in neuronal communications are localized in lipid rafts. These rafts form the platform for coordinating neuronal signal transduction, by clustering interacting partners.

View Article and Find Full Text PDF

Cyclic phosphatidic acid (cPA), an analog of lysophosphatidic acid (LPA), was previously identified in human serum. Although cPA possesses distinct physiological activities not elicited by LPA, its biochemical origins have scarcely been studied. In the present study, we assayed cPA formation from lysophosphatidylcholine in fetal bovine serum and found significant activity of transphosphatidylation that generated cPA.

View Article and Find Full Text PDF