Publications by authors named "Chie Oshita"

The frequent recurrence of glioblastoma multiforme (GBM) after standard treatment with temozolomide (TMZ) is a crucial issue to be solved in the clinical field. O6‑methylguanine‑DNA methyltransferase (MGMT) is considered one of the major mechanisms involved in TMZ resistance. However, some important mechanisms for TMZ resistance other than MGMT have recently been identified.

View Article and Find Full Text PDF

Of all potential biological therapeutics, monoclonal antibody (mAb)-based therapies are becoming the dominant focus of clinical research. In particular, smaller recombinant antibody fragments such as single-chain variable fragments (scFv) have become the subject of intense focus. However, an efficient affinity ligand for antibody fragment purification has not been developed.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is one of the most malignant and aggressive tumors, and has a very poor prognosis with a mean survival time of <2 years, despite intensive treatment using chemo-radiation. Therefore, novel therapeutic approaches including immunotherapy have been developed against GBM. For the purpose of identifying novel target antigens contributing to GBM treatment, we developed 17 primary glioma cell lines derived from high-grade glioma patients, and analyzed the expression of various tumor antigens and glioma-associated markers using a quantitative PCR and immunohistochemistry (IHC).

View Article and Find Full Text PDF

Antibody direct cloning from single B cells is simple and efficient and has been successful in antibody identification of infectious diseases. However, although a recent whole-exome sequencing revealed abundant heterogeneic mutation accumulation in cancers, identification and synthesis of autoantibodies against specific cancer-associated antigens is still difficult in cancer patients owing to the very small number of B cells producing autoantibodies. In the present study, to identify autoantibodies targeting tumor antigens, we measured the titer of autoantibodies in high-grade glioma patients' plasma and identified two patients with elevated autoantibodies to a few transmembrane proteins.

View Article and Find Full Text PDF

Signal transducer and activator of transcription (STAT) 3, a member of a family of DNA-binding molecules, is a potential target in the treatment of cancer. The highly phosphorylated STAT3 in cancer cells contributes to numerous physiological and oncogenic signaling pathways. Furthermore, a significant association between STAT3 signaling and glioblastoma multiforme stem-like cell (GBM-SC) development and maintenance has been demonstrated in recent studies.

View Article and Find Full Text PDF

Background: High-grade gliomas including glioblastoma multiforme (GBM) are among the most malignant and aggressive of tumors, and have a very poor prognosis despite a temozolomide-based intensive treatment. Therefore, a novel therapeutic approach to controlling recurrence is needed. In the present study, we investigated the effect of activated dendritic cell (DC) (α-type-1 polarized DC)-based immunotherapy on high-grade glioma patients with the HLA-A2 or A24 genotype.

View Article and Find Full Text PDF

Metastatic and chemoresistant melanoma can be a good target of immunotherapy because it is an intractable cancer with a very poor prognosis. Previously, we tested a dendritic cell (DC)-based phase I vaccine, and confirmed that it was safe. In the present study, we performed a phase II trial of a DC vaccine for metastatic melanoma patients with mainly the HLA-A24 genotype, and investigated the efficacy of the vaccine.

View Article and Find Full Text PDF

Many cancer-testis antigen genes have been identified; however, few human leukocyte antigen (HLA)-A24-restricted cytotoxic T cell (CTL) epitope peptides are available for clinical immunotherapy. To solve this problem, novel tools increasing the efficacy and accuracy of CTL epitope detection are needed. In the present study, we utilized a highly active dendritic cell (DC)-culture method and an in silico HLA-A24 peptide-docking simulation assay to identify novel CTL epitopes from MAGE-A6 and MAGE-A12 antigens.

View Article and Find Full Text PDF

Signal transducer and activator of transcription (STAT)3, a member of a family of DNA-binding molecules mediating numerous physiological and oncogenic signaling pathways, is a novel target in cancer cells which show high phosphorylation of STAT3. Recently, we identified a novel small-molecule inhibitor of STAT3 dimerization, STX-0119, as a cancer therapeutic. We investigated the mechanisms responsible for the antitumor activity in vitro and in vivo through numerous biochemical and biological assays.

View Article and Find Full Text PDF

Carcinoembryonic antigen (CEA) is a very common tumor marker because many types of solid cancer usually produce a variety of CEA and a highly sensitive measuring kit has been developed. However, immunological responses associated with CEA have not been fully characterized, and specifically a weak immunogenicity of CEA protein as a tumor antigen is reported in human leukocyte antigen (HLA)-A24-restricted CEA peptide-based cancer immunotherapy. These observations demonstrated that immunogenic and potent HLA-A24-restricted CTL epitope peptides derived from CEA protein are seemingly difficult to predict using a conventional bioinformatics approach based on primary amino acid sequence.

View Article and Find Full Text PDF

The signal transducer and activator of transcription 3 (STAT3) is considered to be an attractive therapeutic target for oncology drug development. We identified a N-[2-(1,3,4-oxadiazolyl)]-4-quinolinecarboxamide derivative, STX-0119, as a novel STAT3 dimerization inhibitor by a virtual screen using a customized version of the DOCK4 program with the crystal structure of STAT3. In addition, we used in vitro cell-based assays such as the luciferase reporter gene assay and the fluorescence resonance energy transfer-based STAT3 dimerization assay.

View Article and Find Full Text PDF

Recently, because of highly advanced protein engineering technology, beyond the chimeric antibody, highly humanized and fully human antibody development is becoming crucial in the medical field. In the last decade, investigational approaches using clinical samples for fully human antibody production have been performed, but there are still problems with efficiency and accuracy, which should be solved. In the present study, based on novel IgG antibody-measuring ELISA and antibody gene copy number-quantitative PCR, a human single B cell RT-PCR-mediated IgG monoclonal antibody (mAb) gene cloning method was established, and CMVpp65-specific human mAbs were successfully identified.

View Article and Find Full Text PDF