Publications by authors named "Chie Kanei-Ishii"

The c-myb proto-oncogene product (c-Myb) is degraded in response to Wnt-1 signaling. In this process, Fbxw7α, the F-box protein of the SCF complex, binds to c-Myb via its C-terminal WD40 domain, and induces the ubiquitination of c-Myb. Here, we report that Fbxw5, another F-box protein, enhances sumoylation of nuclear c-Myb.

View Article and Find Full Text PDF

The c-myb proto-oncogene product (c-Myb) induces transcription of a group of target genes involved in the G1/S transition and in anti-apoptosis. The level of c-Myb is negatively regulated by the Wnt signal, but it remains obscure how c-Myb activity is positively regulated. We have found that ribosomal protein L4 (RPL4) binds to the DNA-binding domain of c-Myb.

View Article and Find Full Text PDF

The c-myb proto-oncogene product (c-Myb) is degraded in response to Wnt-1 signaling via a pathway involving TAK1 (transforming growth factor-beta-activated kinase 1), HIPK2 (homeodomain-interacting protein kinase 2), and NLK (Nemo-like kinase). NLK directly binds to c-Myb, which results in the phosphorylation of c-Myb at multiple sites, and induces its ubiquitination and proteasome-dependent degradation. Here, we report that Fbxw7, the F-box protein of an SCF complex, targets c-Myb for degradation in a Wnt-1- and NLK-dependent manner.

View Article and Find Full Text PDF

Small ubiquitin-related modifiers (SUMOs) are proteins that are posttranslationally conjugated to diverse proteins. The c-myb proto-oncogene product (c-Myb) regulates proliferation and differentiation of hematopoietic cells. PIASy is the only known SUMO E3 ligase for c-Myb.

View Article and Find Full Text PDF

The c-myb proto-oncogene product (c-Myb) regulates proliferation and differentiation of hematopoietic cells. Recently we have shown that c-Myb is degraded in response to Wnt-1 stimulation via a pathway involving TAK1 (TGF-beta-activated kinase), HIPK2 (homeodomain-interacting protein kinase 2), and NLK (Nemo-like kinase). NLK and HIPK2 bind directly to c-Myb and phosphorylate c-Myb at multiple sites, inducing its ubiquitination and proteasome-dependent degradation.

View Article and Find Full Text PDF

Recently we have shown that the c-myb proto-oncogene product (c-Myb) is degraded in response to Wnt-1 signaling via the pathway involving TAK1 (transforming growth factor-beta-activated kinase), HIPK2 (homeodomain-interacting protein kinase 2), and NLK (Nemo-like kinase). NLK and HIPK2 bind directly to c-Myb, which results in the phosphorylation of c-Myb at multiple sites, followed by its ubiquitination and proteasome-dependent degradation. The v-myb gene carried by avian myeloblastosis virus has a transforming capacity, but the c-myb proto-oncogene does not.

View Article and Find Full Text PDF

The c-myb proto-oncogene product (c-Myb) regulates both the proliferation and apoptosis of hematopoietic cells by inducing the transcription of a group of target genes. However, the biologically relevant molecular mechanisms that regulate c-Myb activity remain unclear. Here we report that c-Myb protein is phosphorylated and degraded by Wnt-1 signal via the pathway involving TAK1 (TGF-beta-activated kinase), HIPK2 (homeodomain-interacting protein kinase 2), and NLK (Nemo-like kinase).

View Article and Find Full Text PDF

The c-myb proto-oncogene product (c-Myb) regulates proliferation of hematopoietic cells by inducing the transcription of a group of target genes. Removal or mutations of the negative regulatory domain (NRD) in the C-terminal half of c-Myb leads to increased transactivating capacity and oncogenic activation. Here we report that TIF1beta directly binds to the NRD and negatively regulates the c-Myb-dependent trans-activation.

View Article and Find Full Text PDF

Multiple co-repressors such as N-CoR/SMRT, mSin3, and the c-ski proto-oncogene product (c-Ski) mediate the transcriptional repression induced by Mad and the thyroid hormone receptor by recruiting the histone deacetylase complex. c-Ski also binds directly to Smad proteins, which are transcriptional activators in the transforming growth factor-beta (TGF-beta)/bone morphogenetic protein (BMP) signaling pathways, and inhibits TGF-beta/BMP-induced transcriptional activation. However, it remains unknown whether other co-repressor(s) are also involved with Ski in the negative regulation of the TGF-beta/BMP signaling pathways.

View Article and Find Full Text PDF