Heparin-binding epidermal growth factor (EGF)- like growth factor (HB-EGF) is synthesized in the ER, transported along the exocytic pathway, and expressed on the plasma membrane as a type I transmembrane protein. Upon extracellular stimulation, HB-EGF, either proHB-EGF or the shed form HB-EGF-CTF, undergoes endocytosis and is then transported retrogradely to the ER. In this study, we showed the essential contribution of the short cytoplasmic tail of HB-EGF (HB-EGF-cyto) to the bidirectional intracellular trafficking between the ER and plasma membrane and revealed several critical amino acids residues that are responsible for internalization from the plasma membrane and ER targeting.
View Article and Find Full Text PDFHeparin-binding EGF-like growth factor (HB-EGF) is synthesized as a type I transmembrane protein (proHB-EGF) and expressed on the cell surface. The ectodomain shedding of proHB-EGF at the extracellular region on the plasma membrane yields a soluble EGF receptor ligand and a transmembrane-cytoplasmic fragment (HB-EGF-CTF). The cytoplasmic domain of proHB-EGF (HB-EGF-cyto) interacts with transcriptional repressors to reverse their repressive activities.
View Article and Find Full Text PDFMany studies have examined transcriptional regulation during the initiation of skeletal muscle differentiation; however, there is less information regarding transcriptional control during adult myogenesis and during the maintenance of the differentiated state. MyoD and the mammalian SWI/SNF chromatin-remodeling enzymes containing the Brg1 ATPase are necessary to induce myogenesis in cell culture models and in developing embryonic tissue, whereas myogenin and Brg1 are critical for the expression of the late genes that induce terminal muscle differentiation. Here, we demonstrate that myogenin also binds to its own promoter during the late stages of embryonic muscle development.
View Article and Find Full Text PDFThe microphthalmia transcription factor (Mitf) activates melanocyte-specific gene expression, is critical for survival and proliferation of melanocytes during development, and has been described as an oncogene in malignant melanoma. SWI/SNF complexes are ATP-dependent chromatin-remodeling enzymes that play a role in many developmental processes. To determine the requirement for SWI/SNF enzymes in melanocyte differentiation, we introduced Mitf into fibroblasts that inducibly express dominant negative versions of the SWI/SNF ATPases, Brahma or Brahma-related gene 1 (BRG1).
View Article and Find Full Text PDF