Silicon-based microelectronics can scalably record and modulate neural activity at high spatiotemporal resolution, but their planar form factor poses challenges in targeting 3D neural structures. A method for fabricating tissue-penetrating 3D microelectrodes directly onto planar microelectronics using high-resolution 3D printing via 2-photon polymerization and scalable microfabrication technologies are presented. This approach enables customizable electrode shape, height, and positioning for precise targeting of neuron populations distributed in 3D.
View Article and Find Full Text PDFNeural implants have the potential to restore lost sensory function by electrically evoking the complex naturalistic activity patterns of neural populations. However, it can be difficult to predict and control evoked neural responses to simultaneous multi-electrode stimulation due to nonlinearity of the responses. We present a solution to this problem and demonstrate its utility in the context of a bidirectional retinal implant for restoring vision.
View Article and Find Full Text PDFFixational eye movements alter the number and timing of spikes transmitted from the retina to the brain, but whether these changes enhance or degrade the retinal signal is unclear. To quantify this, we developed a Bayesian method for reconstructing natural images from the recorded spikes of hundreds of retinal ganglion cells (RGCs) in the macaque retina (male), combining a likelihood model for RGC light responses with the natural image prior implicitly embedded in an artificial neural network optimized for denoising. The method matched or surpassed the performance of previous reconstruction algorithms, and provides an interpretable framework for characterizing the retinal signal.
View Article and Find Full Text PDFObjective: Neural interfaces are designed to evoke specific patterns of electrical activity in populations of neurons by stimulating with many electrodes. However, currents passed simultaneously through multiple electrodes often combine nonlinearly to drive neural responses, making evoked responses difficult to predict and control. This response nonlinearity could arise from the interaction of many excitable sites in each cell, any of which can produce a spike.
View Article and Find Full Text PDFLinear-nonlinear (LN) cascade models provide a simple way to capture retinal ganglion cell (RGC) responses to artificial stimuli such as white noise, but their ability to model responses to natural images is limited. Recently, convolutional neural network (CNN) models have been shown to produce light response predictions that were substantially more accurate than those of a LN model. However, this modeling approach has not yet been applied to responses of macaque or human RGCs to natural images.
View Article and Find Full Text PDF. Bi-directional electronic neural interfaces, capable of both electrical recording and stimulation, communicate with the nervous system to permit precise calibration of electrical inputs by capturing the evoked neural responses. However, one significant challenge is that stimulation artifacts often mask the actual neural signals.
View Article and Find Full Text PDFIdentifying neuronal cell types and their biophysical properties based on their extracellular electrical features is a major challenge for experimental neuroscience and the development of high-resolution brain-machine interfaces. One example is identification of retinal ganglion cell (RGC) types and their visual response properties, which is fundamental for developing future electronic implants that can restore vision. The electrical image (EI) of a RGC, or the mean spatio-temporal voltage footprint of its recorded spikes on a high-density electrode array, contains substantial information about its anatomical, morphological, and functional properties.
View Article and Find Full Text PDFFixational eye movements alter the number and timing of spikes transmitted from the retina to the brain, but whether these changes enhance or degrade the retinal signal is unclear. To quantify this, we developed a Bayesian method for reconstructing natural images from the recorded spikes of hundreds of retinal ganglion cells (RGCs) in the macaque retina (male), combining a likelihood model for RGC light responses with the natural image prior implicitly embedded in an artificial neural network optimized for denoising. The method matched or surpassed the performance of previous reconstruction algorithms, and provides an interpretable framework for characterizing the retinal signal.
View Article and Find Full Text PDF. Retinal implants are designed to stimulate retinal ganglion cells (RGCs) in a way that restores sight to individuals blinded by photoreceptor degeneration. Reproducing high-acuity vision with these devices will likely require inferring the natural light responses of diverse RGC types in the implanted retina, without being able to measure them directly.
View Article and Find Full Text PDFIEEE Trans Biomed Circuits Syst
August 2023
Future high-density and high channel count neural interfaces that enable simultaneous recording of tens of thousands of neurons will provide a gateway to study, restore and augment neural functions. However, building such technology within the bit-rate limit and power budget of a fully implantable device is challenging. The wired-OR compressive readout architecture addresses the data deluge challenge of a high channel count neural interface using lossy compression at the analog-to-digital interface.
View Article and Find Full Text PDFSilicon-based planar microelectronics is a powerful tool for scalably recording and modulating neural activity at high spatiotemporal resolution, but it remains challenging to target neural structures in three dimensions (3D). We present a method for directly fabricating 3D arrays of tissue-penetrating microelectrodes onto silicon microelectronics. Leveraging a high-resolution 3D printing technology based on 2-photon polymerization and scalable microfabrication processes, we fabricated arrays of 6,600 microelectrodes 10-130 μm tall and at 35-μm pitch onto a planar silicon-based microelectrode array.
View Article and Find Full Text PDFHigh-fidelity electronic implants can in principle restore the function of neural circuits by precisely activating neurons via extracellular stimulation. However, direct characterization of the individual electrical sensitivity of a large population of target neurons, to precisely control their activity, can be difficult or impossible. A potential solution is to leverage biophysical principles to infer sensitivity to electrical stimulation from features of spontaneous electrical activity, which can be recorded relatively easily.
View Article and Find Full Text PDFElectrical stimulation of retinal ganglion cells (RGCs) with electronic implants provides rudimentary artificial vision to people blinded by retinal degeneration. However, current devices stimulate indiscriminately and therefore cannot reproduce the intricate neural code of the retina. Recent work has demonstrated more precise activation of RGCs using focal electrical stimulation with multielectrode arrays in the peripheral macaque retina, but it is unclear how effective this can be in the central retina, which is required for high-resolution vision.
View Article and Find Full Text PDFIEEE J Solid-State Circuits
November 2022
Single modality wireless power transfer has limited depth for mm-sized implants across air / tissue or skull / tissue interfaces because they either suffer from high loss in tissue (RF, Optical) or high reflection at the medium interface (Ultrasound (US)). This paper proposes an RF-US relay chip at the media interface avoiding the reflection at the boundary, and enabling efficient wireless powering to mm-sized deep implants across multiple media. The relay chip rectifies the incoming RF power through an 85.
View Article and Find Full Text PDF. Vision restoration with retinal implants is limited by indiscriminate simultaneous activation of many cells and cell types, which is incompatible with reproducing the neural code of the retina. Recent work has shown that primate retinal ganglion cells (RGCs), which transmit visual information to the brain, can be directly electrically activated with single-cell, single-spike, cell-type precision - however, this possibility has never been tested in the human retina.
View Article and Find Full Text PDFVariation in the neural code contributes to making each individual unique. We probed neural code variation using ∼100 population recordings from major ganglion cell types in the macaque retina, combined with an interpretable computational representation of individual variability. This representation captured variation and covariation in properties such as nonlinearity, temporal dynamics, and spatial receptive field size and preserved invariances such as asymmetries between On and Off cells.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
January 2022
Objective: Retinal prostheses must be able to activate cells in a selective way in order to restore high-fidelity vision. However, inadvertent activation of far-away retinal ganglion cells (RGCs) through electrical stimulation of axon bundles can produce irregular and poorly controlled percepts, limiting artificial vision. In this work, we aim to provide an algorithmic solution to the problem of detecting axon bundle activation with a bi-directional epiretinal prostheses.
View Article and Find Full Text PDFEpiretinal prostheses are designed to restore vision to people blinded by photoreceptor degenerative diseases by stimulating surviving retinal ganglion cells (RGCs), which carry visual signals to the brain. However, inadvertent stimulation of RGCs at their axons can result in non-focal visual percepts, limiting the quality of artificial vision. Theoretical work has suggested that axon activation can be avoided with current stimulation designed to minimize the second spatial derivative of the induced extracellular voltage along the axon.
View Article and Find Full Text PDFDecoding sensory stimuli from neural activity can provide insight into how the nervous system might interpret the physical environment, and facilitates the development of brain-machine interfaces. Nevertheless, the neural decoding problem remains a significant open challenge. Here, we present an efficient nonlinear decoding approach for inferring natural scene stimuli from the spiking activities of retinal ganglion cells (RGCs).
View Article and Find Full Text PDFThe visual message conveyed by a retinal ganglion cell (RGC) is often summarized by its spatial receptive field, but in principle also depends on the responses of other RGCs and natural image statistics. This possibility was explored by linear reconstruction of natural images from responses of the four numerically-dominant macaque RGC types. Reconstructions were highly consistent across retinas.
View Article and Find Full Text PDFA future artificial retina that can restore high acuity vision in blind people will rely on the capability to both read (observe) and write (control) the spiking activity of neurons using an adaptive, bi-directional and high-resolution device. Although current research is focused on overcoming the technical challenges of building and implanting such a device, exploiting its capabilities to achieve more acute visual perception will also require substantial computational advances. Using high-density large-scale recording and stimulation in the primate retina with an ex vivo multi-electrode array lab prototype, we frame several of the major computational problems, and describe current progress and future opportunities in solving them.
View Article and Find Full Text PDFMulti-channel electrical recordings of neural activity in the brain is an increasingly powerful method revealing new aspects of neural communication, computation, and prosthetics. However, while planar silicon-based CMOS devices in conventional electronics scale rapidly, neural interface devices have not kept pace. Here, we present a new strategy to interface silicon-based chips with three-dimensional microwire arrays, providing the link between rapidly-developing electronics and high density neural interfaces.
View Article and Find Full Text PDF