Publications by authors named "Chichi Huang"

TIGIT is mainly expressed on T cells and is an inhibitory checkpoint receptor that binds to its ligand PVR in the tumor microenvironment. Anti-TIGIT monoclonal antibodies (mAbs) such as Ociperlimab and Tiragolumab block the TIGIT-PVR interaction and are in clinical development. However, the molecular blockade mechanism of these mAbs remains elusive.

View Article and Find Full Text PDF

Pharmaceutical companies have recently focused on accelerating the timeline for initiating first-in-human (FIH) trials to allow quick assessment of biologic drugs. For example, a stable cell pool can be used to produce materials for the toxicology (Tox) study, reducing time to the clinic by 4-5 months. During the coronavirus disease 2019 (COVID-19) pandemic, the anti-COVID drugs timeline from DNA transfection to the clinical stage was decreased to 6 months using a stable pool to generate a clinical drug substrate (DS) with limited stability, virus clearance, and Tox study package.

View Article and Find Full Text PDF
Article Synopsis
  • - Aspartic acid (Asp) isomerization is a non-enzymatic change that occurs in proteins, especially therapeutic antibodies, during manufacturing and storage, affecting their structure and function.
  • - Certain Asp motifs like Asp-Gly, Asp-Ser, and Asp-Thr are known as "hot spots" for isomerization, while Asp-His is typically a "silent spot" until this study found high isomerization in the Asp residue of the DHK motif in monoclonal antibody mAb-a.
  • - The study revealed that isomerization in the DHK motif can reduce antibody activity significantly, despite not affecting pharmacokinetics; therefore, it’s recommended to remove DHK motifs from antibody therapeutics
View Article and Find Full Text PDF

Single-chain fragment variable (scFv) domains play an important role in antibody-based therapeutic modalities, such as bispecifics, multispecifics and chimeric antigen receptor T cells or natural killer cells. However, scFv domains exhibit lower stability and increased risk of aggregation due to transient dissociation ("breathing") and inter-molecular reassociation of the two domains (VL and VH). We designed a novel strategy, referred to as stapling, that introduces two disulfide bonds between the scFv linker and the two variable domains to minimize scFv breathing.

View Article and Find Full Text PDF

Growth differentiation factor 15 (GDF15), a distant member of the transforming growth factor (TGF)-β family, is a secreted protein that circulates as a 25-kDa dimer. In humans, elevated GDF15 correlates with weight loss, and the administration of GDF15 to mice with obesity reduces body weight, at least in part, by decreasing food intake. The mechanisms through which GDF15 reduces body weight remain poorly understood, because the cognate receptor for GDF15 is unknown.

View Article and Find Full Text PDF

Ion channels are an attractive class of drug targets, but progress in developing inhibitors for therapeutic use has been limited largely due to challenges in identifying subtype selective small molecules. Animal venoms provide an alternative source of ion channel modulators, and the venoms of several species, such as scorpions, spiders and snails, are known to be rich sources of ion channel modulating peptides. Importantly, these peptides often bind to hyper-variable extracellular loops, creating the potential for subtype selectivity rarely achieved with small molecules.

View Article and Find Full Text PDF

The MIMETIBODY™ platform was developed to expand the opportunities for application of biotherapeutics. While the utility of antibodies as antagonists has been well demonstrated, their application as agonists has been more challenging. For steric reasons, antibodies may be less well suited to perform as agonists or as inhibitors of GPCRs.

View Article and Find Full Text PDF

CNTO 530 is an erythropoietin receptor agonist MIMETIBODYTM construct. CNTO 530 has been shown to be active in a number of rodent models of acquired anemia (e.g.

View Article and Find Full Text PDF

Fc fusion proteins are molecules in which the immunoglobulin Fc is fused genetically to a protein of interest, such as an extracellular domain of a receptor, ligand, enzyme, or peptide. Fc fusion proteins have some antibody-like properties such as long serum half-life and easy expression and purification, making them an attractive platform for therapeutic drugs. Five Fc fusion based drugs are on the market presently, and many more are in different stages of clinical trials, demonstrating that Fc fusion proteins have become credible alternatives to monoclonal antibodies as therapeutics.

View Article and Find Full Text PDF