Objectives: Environmental factors such as physical activity induce epigenetic modifications, with exercise-responsive DNA methylation changes occurring in skeletal muscle. To determine the skeletal muscle DNA methylation signature of endurance swim training, we used whole-genome methylated DNA immunoprecipitation (MeDIP) sequencing.
Methods: We utilized endurance-trained rats, cultured L6 myotubes, and human skeletal muscle cells, employing MeDIP sequencing, gene silencing, and palmitate oxidation assays.
Increased plasma creatine concentrations are associated with the risk of type 2 diabetes, but whether this alteration is associated with or causal for impairments in metabolism remains unexplored. Because skeletal muscle is the main disposal site of both creatine and glucose, we investigated the role of intramuscular creatine metabolism in the pathophysiology of insulin resistance in type 2 diabetes. In men with type 2 diabetes, plasma creatine concentrations were increased, and intramuscular phosphocreatine content was reduced.
View Article and Find Full Text PDFBackground And Aim: Diacylglycerol kinase (DGK) isoforms catalyze an enzymatic reaction that removes diacylglycerol (DAG) and thereby terminates protein kinase C signaling by converting DAG to phosphatidic acid. DGKδ (type II isozyme) downregulation causes insulin resistance, metabolic inflexibility, and obesity. Here we determined whether DGKδ overexpression prevents these metabolic impairments.
View Article and Find Full Text PDFIn skeletal muscle, Na,K-ATPase (NKA), a heterodimeric (α/β) P-type ATPase, has an essential role in maintenance of Na and K homeostasis, excitability, and contractility. AMP-activated protein kinase (AMPK), an energy sensor, increases the membrane abundance and activity of NKA in L6 myotubes, but its potential role in regulation of NKA content in skeletal muscle, which determines maximum capacity for Na and K transport, has not been clearly delineated. We examined whether energy stress and/or AMPK affect expression of NKA subunits in rat L6 and primary human myotubes.
View Article and Find Full Text PDFThe discovery of exercise-regulated circulatory factors has fueled interest in organ crosstalk, especially between skeletal muscle and adipose tissue, and the role in mediating beneficial effects of exercise. We studied the adipose tissue transcriptome in men and women with normal glucose tolerance or type 2 diabetes following an acute exercise bout, revealing substantial exercise- and time-dependent changes, with sustained increase in inflammatory genes in type 2 diabetes. We identify oncostatin-M as one of the most upregulated adipose-tissue-secreted factors post-exercise.
View Article and Find Full Text PDFType 2 diabetes mellitus accounts for about 90% of cases of diabetes and is considered one of the most important problems of our time. Despite a significant number of studies on glucose metabolism, the molecular mechanisms of its regulation in health and disease remain insufficiently studied. That is why non-drug treatment of metabolic disorders is of great relevance, including physical activity.
View Article and Find Full Text PDFObesity and elevated circulating lipids may impair metabolism by disrupting the molecular circadian clock. We tested the hypothesis that lipid overload may interact with the circadian clock and alter the rhythmicity of gene expression through epigenomic mechanisms in skeletal muscle. Palmitate reprogrammed the circadian transcriptome in myotubes without altering the rhythmic mRNA expression of core clock genes.
View Article and Find Full Text PDFMechanistic insights into the molecular events by which exercise enhances the skeletal muscle phenotype are lacking, particularly in the context of type 2 diabetes. Here, we unravel a fundamental role for exercise-responsive cytokines () on skeletal muscle development and growth in individuals with normal glucose tolerance or type 2 diabetes. Acute exercise triggered an inflammatory response in skeletal muscle, concomitant with an infiltration of immune cells.
View Article and Find Full Text PDFThe effect of treadmill training loads on the content of cytokines in mice skeletal muscles with metabolic disorders induced by a 16 week high fat diet (HFD) was studied. The study included accounting the age and biorhythmological aspects. In the experiment, mice were used at the age of 4 and 32 weeks, by the end of the experiment-respectively 20 and 48 weeks.
View Article and Find Full Text PDFNa,K-ATPase (NKA) is essential for maintenance of cellular and whole-body water and ion homeostasis. In the kidney, a major site of ion transport, NKA consumes ~ 50% of ATP, indicating a tight coordination of NKA and energy metabolism. AMP-activated protein kinase (AMPK), a cellular energy sensor, regulates NKA by modulating serine phosphorylation of the α1-subunit, but whether it modulates other important regulatory phosphosites, such as Tyr10, is unknown.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
November 2021
Skeletal muscle is an endocrine organ secreting exercise-induced factors (exerkines), which play a pivotal role in interorgan cross talk. Using mass spectrometry (MS)-based proteomics, we characterized the secretome and identified thymosin β4 (TMSB4X) as the most upregulated secreted protein in the media of contracting C2C12 myotubes. TMSB4X was also acutely increased in the plasma of exercising humans irrespective of the insulin resistance condition or exercise mode.
View Article and Find Full Text PDFAims/hypothesis: Increased levels of branched-chain amino acids (BCAAs) are associated with type 2 diabetes pathogenesis. However, most metabolomic studies are limited to an analysis of plasma metabolites under fasting conditions, rather than the dynamic shift in response to a metabolic challenge. Moreover, metabolomic profiles of peripheral tissues involved in glucose homeostasis are scarce and the transcriptomic regulation of genes involved in BCAA catabolism is partially unknown.
View Article and Find Full Text PDFAims/hypothesis: We sought to determine putative relationships among improved mitochondrial respiration, insulin sensitivity and altered skeletal muscle lipids and metabolite signature in response to combined aerobic and resistance training in women with obesity.
Methods: This study reports a secondary analysis of a randomised controlled trial including additional measures of mitochondrial respiration, skeletal muscle lipidomics, metabolomics and protein content. Women with obesity were randomised into 12 weeks of combined aerobic and resistance exercise training (n = 20) or control (n = 15) groups.
Background & Aims: The physiological regulation and contribution of the multiple phosphorylation sites of insulin receptor substrate 1 (IRS1) to the pathogenesis of insulin resistance is unknown. Our aims were to map the phosphorylated motifs of IRS1 in skeletal muscle from people with normal glucose tolerance (NGT; n = 11) or type 2 diabetes mellitus (T2DM; n = 11).
Methods: Skeletal muscle biopsies were obtained under fasted conditions or during a euglycemic clamp and IRS1 phosphorylation sites were identified by mass spectrometry.
AMP-activated protein kinase (AMPK) is a cellular energy gauge and a major regulator of cellular energy homeostasis. Once activated, AMPK stimulates nutrient uptake and the ATP-producing catabolic pathways, while it suppresses the ATP-consuming anabolic pathways, thus helping to maintain the cellular energy balance under energy-deprived conditions. As much as ~ 20-25% of the whole-body ATP consumption occurs due to a reaction catalysed by Na,K-ATPase (NKA).
View Article and Find Full Text PDFThe cardiotonic steroids (CTS), such as ouabain and marinobufagenin, are thought to be adrenocortical hormones secreted during exercise and the stress response. The catalytic α-subunit of Na,K-ATPase (NKA) is a CTS receptor, whose largest pool is located in skeletal muscles, indicating that muscles are a major target for CTS. Skeletal muscles contribute to adaptations to exercise by secreting interleukin-6 (IL-6) and plethora of other cytokines, which exert paracrine and endocrine effects in muscles and non-muscle tissues.
View Article and Find Full Text PDFNa,K-ATPase is a membrane transporter that is critically important for skeletal muscle function. Mdx and Bla/J mice are the experimental models of Duchenne muscular dystrophy and dysferlinopathy that are known to differ in the molecular mechanism of the pathology. This study examines the function of α1- and α2-Na,K-ATPase isozymes in respiratory diaphragm and postural soleus muscles from mdx and Bla/J mice compared with control С57Bl/6 mice.
View Article and Find Full Text PDFRat L6, mouse C2C12, and primary human skeletal muscle cells (HSMCs) are commonly used to study biological processes in skeletal muscle, and experimental data on these models are abundant. However, consistently matched experimental data are scarce, and comparisons between the different cell types and adult tissue are problematic. We hypothesized that metabolic differences between these cellular models may be reflected at the mRNA level.
View Article and Find Full Text PDFObjective: To compare basal insulin and mTOR signaling in subcutaneous fat of obese T2DM vs. obese subjects with normal glucose tolerance (NGT), and correlate it with clinical parameters of carbohydrate metabolism and incretin secretion profiles.
Methods: Recruited were 22 patients with long (>10 years) and morbid (BMI > 35 kg/m) obesity, 12 of which had NGT and 10 had T2DM.
During exercise, skeletal muscles release cytokines, peptides, and metabolites that exert autocrine, paracrine, or endocrine effects on glucose homeostasis. In this study, we investigated the effects of secreted protein acidic and rich in cysteine (SPARC), an exercise-responsive myokine, on glucose metabolism in human and mouse skeletal muscle. SPARC-knockout mice showed impaired systemic metabolism and reduced phosphorylation of AMPK and protein kinase B in skeletal muscle.
View Article and Find Full Text PDFNa-K-ATPase, an α/β heterodimer, is an ancient enzyme that maintains Na and K gradients, thus preserving cellular ion homeostasis. In multicellular organisms, this basic housekeeping function is integrated to fulfill the needs of specialized organs and preserve whole-body homeostasis. In vertebrates, Na-K-ATPase is essential for many fundamental physiological processes, such as nerve conduction, muscle contraction, nutrient absorption, and urine excretion.
View Article and Find Full Text PDF