Publications by authors named "Chiariello M"

Background: Ritonavir-boosted nirmatrelvir (N/r) is an antiviral which targets the main viral protease, administered to prevent the progression of SARS-CoV-2 infection in patients at high risk for severe COVID-19. We present a real-life case-control study evaluating the efficacy of N/r therapy in SARS-CoV-2 omicron variants positive outpatients in Campania region, Italy, with the aim of assessing the occurrence of three outcomes (hospital admission, admission in ICU and death) in cases and controls.

Methods: We enrolled SARS-CoV-2 positive subjects that came to our attention in Early antiviral treatment ambulatory of Infectious Diseases ward of University Federico II of Naples, Italy from January 1st, 2022, to December 31st, 2022, during the first five days from symptoms occurrence.

View Article and Find Full Text PDF

Planar biaxial testing offers a physiologically relevant approach for mechanically characterizing thin deformable soft tissues, but often relies on erroneous assumptions of uniform strain fields and negligible shear strains and forces. In addition to the complex mechanical behavior exhibited by soft tissues, constraints on sample size, geometry, and aspect ratio often restrict sample shape and symmetry. Using simple PDMS gels, we explored the unknown and unquantified effects of sample shape asymmetry on planar biaxial testing results, including shear strain magnitudes, shear forces measured at the sample's boundary, and the homogeneity of strains experienced at the center of each sample.

View Article and Find Full Text PDF

Consuming an unbalanced diet and being overweight represent a global health problem in young people and adults of both sexes, and may lead to metabolic syndrome. The diet-induced obesity (DIO) model in the C57BL/6J mouse substrain that mimics the gradual weight gain in humans consuming a "Western-type" (WD) diet is of great interest. This study aims to characterize this animal model, using high-frequency ultrasound imaging (HFUS) as a complementary tool to longitudinally monitor changes in the liver, heart and kidney.

View Article and Find Full Text PDF
Article Synopsis
  • ASCT2 is a crucial protein that exchanges neutral amino acids to maintain balance in cellular amino acid levels.
  • The research reveals that ASCT2 binds three sodium ions for each amino acid it transports and has unique mechanisms that prevent sodium ion leakage, differing from similar transporters like EAATs.
  • Unlike EAATs, ASCT2's rigid structure prevents it from switching to a mode that concentrates amino acids, keeping it functionally locked in an exchange mode.
View Article and Find Full Text PDF

As a critical step in advancing the simulation of photosynthetic complexes, we present the Martini 3 coarse-grained (CG) models of key cofactors associated with light harvesting (LHCII) proteins and the photosystem II (PSII) core complex. Our work focuses on the parametrization of beta-carotene, plastoquinone/quinol, violaxanthin, lutein, neoxanthin, chlorophyll A, chlorophyll B, and heme. We derived the CG parameters to match the all-atom reference simulations, while structural and thermodynamic properties of the cofactors were compared to experimental values when available.

View Article and Find Full Text PDF
Article Synopsis
  • * TNBC cells of the mesenchymal stem-like subtype utilize cystine to activate the NRF2 transcription factor, enhancing their defense against oxidative stress through a mechanism independent of glutathione production.
  • * Four upregulated genes linked to this process serve as negative prognostic markers for TNBC, suggesting that targeting the cystine/NRF2/OSGIN1 pathway could lead to new treatment options for this challenging cancer subtype.
View Article and Find Full Text PDF

Oxidation processes in mitochondria and different environmental insults contribute to unwarranted accumulation of reactive oxygen species (ROS). These, in turn, rapidly damage intracellular lipids, proteins, and DNA, ultimately causing aging and several human diseases. Cells have developed different and very effective systems to control ROS levels.

View Article and Find Full Text PDF

Glioblastoma (GB) is a highly malignant primary brain tumor with limited treatment options and poor prognosis. Despite current treatment approaches, including surgical resection, radiation therapy, and chemotherapy with temozolomide (TMZ), GB remains mostly incurable due to its invasive growth pattern, limited drug penetration beyond the blood-brain barrier (BBB), and resistance to conventional therapies. One of the main challenges in GB treatment is effectively eliminating infiltrating cancer cells that remain in the brain parenchyma after primary tumor resection.

View Article and Find Full Text PDF

Epiretinal membranes (ERMs) are sheets of tissue that pathologically develop in the vitreoretinal interface leading to progressive vision loss. They are formed by different cell types and by an exuberant deposition of extracellular matrix proteins. Recently, we reviewed ERMs' extracellular matrix components to better understand molecular dysfunctions that trigger and fuel the onset and development of this disease.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is the most aggressive primary tumor of the central nervous system and the diagnosis is often dismal. GBM pharmacological treatment is strongly limited by its intracranial location beyond the blood-brain barrier (BBB). While Temozolomide (TMZ) exhibits the best clinical performance, still less than 20% crosses the BBB, therefore requiring administration of very high doses with resulting unnecessary systemic side effects.

View Article and Find Full Text PDF
Article Synopsis
  • The PsbS protein in photosystem II helps plants protect themselves from light damage by responding to acidity changes in the thylakoid lumen.
  • The study uses molecular dynamics simulations to explore how pH changes affect the structure and stability of the dimeric form of PsbS.
  • Findings indicate that lower pH levels disrupt hydrogen bonds at the dimer interface, leading to a weaker protein interaction and promoting the protein's transition to a monomer, which is crucial for photoprotection.
View Article and Find Full Text PDF

Iron is essential for deoxyribonucleotides production and for enzymes containing an Fe-S cluster involved in DNA replication and repair. How iron bioavailability and DNA metabolism are coordinated remains poorly understood. NCOA4 protein mediates autophagic degradation of ferritin to maintain iron homeostasis and inhibits DNA replication origin activation via hindrance of the MCM2-7 DNA helicase.

View Article and Find Full Text PDF

Background: In Neisseria meningitidis the HrpA/HrpB two-partner secretion system (TPS) was implicated in diverse functions including meningococcal competition, biofilm formation, adherence to epithelial cells, intracellular survival and vacuolar escape. These diverse functions could be attributed to distinct domains of secreted HrpA.

Methods: A yeast two-hybrid screening, in vitro pull-down assay and immunofluorescence microscopy experiments were used to investigate the interaction between HrpA and the dynein light-chain, Tctex-type 1 (DYNLT1).

View Article and Find Full Text PDF

During skeletal myogenesis, the zinc-finger transcription factors SNAI1 and SNAI2, are expressed in proliferating myoblasts and regulate the transition to terminally differentiated myotubes while repressing pro-differentiation genes. Here, we demonstrate that SNAI1 is upregulated in vivo during the early phase of muscle regeneration induced by bupivacaine injury. Using shRNA-mediated gene silencing in C2C12 myoblasts and whole-transcriptome microarray analysis, we identified a collection of genes belonging to the endoplasmic reticulum (ER) stress pathway whose expression, induced by myogenic differentiation, was upregulated in absence of SNAI1.

View Article and Find Full Text PDF

Mitochondria are the major source of reactive oxygen species (ROS), whose aberrant production by dysfunctional mitochondria leads to oxidative stress, thus contributing to aging as well as neurodegenerative disorders and cancer. Cells efficiently eliminate damaged mitochondria through a selective type of autophagy, named mitophagy. Here, we demonstrate the involvement of the atypical MAP kinase family member MAPK15 in cellular senescence, by preserving mitochondrial quality, thanks to its ability to control mitophagy and, therefore, prevent oxidative stress.

View Article and Find Full Text PDF

The polymorphism L412F in TLR3 has been associated with several infectious diseases. However, the mechanism underlying this association is still unexplored. Here, we show that the L412F polymorphism in TLR3 is a marker of severity in COVID-19.

View Article and Find Full Text PDF
Article Synopsis
  • DDX3X is an RNA helicase linked to viral replication and cancer progression, and new inhibitors have been developed to block its activity.
  • These inhibitors effectively decreased cell proliferation across various cancer types, including those with low DDX3X expression.
  • The compound BA103 showed significant promise in glioblastoma models by reducing tumor growth and migration, while also targeting the oncogenic protein β-catenin, with minimal side effects.
View Article and Find Full Text PDF

In medulloblastomas, genetic alterations resulting in over-activation and/or deregulation of proteins involved in Hedgehog (HH) signaling lead to cellular transformation, which can be prevented by inhibition of primary ciliogenesis. Here, we investigated the role of MAPK15 in HH signaling and, in turn, in HH-mediated cellular transformation. We first demonstrated, in NIH3T3 mouse fibroblasts, the ability of this kinase of controlling primary ciliogenesis and canonical HH signaling.

View Article and Find Full Text PDF

Inhibition of DDX3X expression or activity reduces proliferation in cells from various tumor tissues, in particular in breast cancer, and its expression often correlates to tumor aggressiveness. This makes DDX3X a prominent candidate for the design of drugs for novel personalized therapeutic strategies. Starting from an in silico drug discovery approach, a group of molecules has been selected by molecular docking at the RNA binding site of DDX3X.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the excited state proton transfer (ESPT) from the photoacid HPTS to an acetate molecule using advanced simulations in water.
  • The proton transfer occurs rapidly (within 1 ps) and is influenced by the initial structural arrangement and water molecules' interactions.
  • Vibrational analysis shows that changes in acetate stretching provide insight into the ESPT progress, with specific modes being activated depending on the proton's binding status.
View Article and Find Full Text PDF

We present electronic structure methods to unveil the non-radiative pathways of photoinduced charge transfer (CT) reactions that play a main role in photophysics and light harvesting technologies. A prototypical π-stacked molecular complex consisting of an electron donor (1-chloronaphthalene, 1ClN) and an electron acceptor (tetracyanoethylene, TCNE) was investigated in dichloromethane solution for this purpose. The characterization of TCNE:π:1ClN in both its equilibrium ground and photoinduced low-lying CT electronic states was performed by using a reliable and accurate theoretical-computational methodology exploiting molecular dynamics simulations.

View Article and Find Full Text PDF

RAB7A is a small GTPase that controls the late endocytic pathway but also cell migration through RAC1 (Ras-related C3 botulinum toxin substrate 1) and vimentin. In fact, RAB7A regulates vimentin phosphorylation at different sites and vimentin assembly, and, in this study, we identified vimentin domains interacting with RAB7A. As several kinases could be responsible for vimentin phosphorylation, we investigated whether modulation of RAB7A expression affects the activity of these kinases.

View Article and Find Full Text PDF

The CLC family of anion channels and transporters includes Cl/H exchangers (blocked by F) and F/H exchangers (or CLCs). CLCs contain a glutamate (E318) in the central anion-binding site that is absent in CLC Cl/H exchangers. The X-ray structure of the protein from (CLC-eca) shows that E318 tightly binds to F when the gating glutamate (E118; highly conserved in the CLC family) faces the extracellular medium.

View Article and Find Full Text PDF
Article Synopsis
  • This study simulates the excited state proton transfer (ESPT) reaction between the pyranine photoacid and an acetate molecule, using a bridge water molecule for connection.
  • It utilizes advanced techniques like ab initio molecular dynamics and a hybrid quantum/molecular mechanics (QM/MM) approach.
  • Key findings include the identification of two low-frequency vibrational modes linked to the ESPT event and the critical impact of the QM/MM partition on the system's photoinduced reactivity, especially when considering the hydrogen bond network at a complete QM level.
View Article and Find Full Text PDF
Article Synopsis
  • In 2008, guidelines were established for researching autophagy, which has since gained significant interest and new technologies, necessitating regular updates to monitoring methods across various organisms.
  • The new guidelines emphasize selecting appropriate techniques to evaluate autophagy while noting that no single method suits all situations; thus, a combination of methods is encouraged.
  • The document highlights that key proteins involved in autophagy also impact other cellular processes, suggesting genetic studies should focus on multiple autophagy-related genes to fully understand these pathways.
View Article and Find Full Text PDF