Publications by authors named "Chiaramoni N"

Synthetic lipids have been studied as components in membrane models and drug delivery systems. Polymerizable phospholipids, especially photosensitive ones, can form new bilayer bonds when UV light irradiates. These phospholipids have been known since the 1980s, but in the last few years, new applications have been highlighted.

View Article and Find Full Text PDF

In the present work, we obtained polymeric diacetylene liposomes that can associate N-Acetyl-l-Cysteine (NAC), a broad spectrum mucolytic. The reason for studying these formulations is that they could be applied in the future as NAC delivery systems, with a possible dose reduction but maintaining its effect. Liposomes used herein are obtained by a photopolymerization reaction, thus gaining stability and rigidity.

View Article and Find Full Text PDF

Epilepsy is a neurological disorder treated with antiepileptic drugs (AEDs). Since AEDs are administered in women in childbearing age, it is critical to study if drugs are capable of inducing developmental toxicity. Along the bibliography available, there is no research comparing teratogenicity and anticonvulsant effect within the same study.

View Article and Find Full Text PDF

This article reports novel results about nanotoxicological and teratogenic effects of the PAMAM dendrimers DG4 and DG4.5 in zebrafish (Danio rerio). Zebrafish embryos and larvae were used as a rapid, high-throughput, cost-effective whole-animal model.

View Article and Find Full Text PDF

In recent years, the use of commercial nanoparticles in different industry and health fields has increased exponentially. However, the uncontrolled application of nanoparticles might present a potential risk to the environment and health. Toxicity of these nanoparticles is usually evaluated by a fast screening assay in zebrafish (Danio rerio).

View Article and Find Full Text PDF

Development of improved drug and gene delivery systems directly into the lungs is highly desirable given the important burden of respiratory diseases. We aimed to evaluate the safety and efficacy of liposomes composed of photopolymerized lipids [1,2-bis-(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine] associated with amino acids as vectors for gene delivery into the lungs of healthy animals. Lipopolymer vesicles, in particular, are more stable than other types of liposomes.

View Article and Find Full Text PDF

Liposomes were developed with bioactive constituents (omega-3, omega-6, tocopherol) incorporated in acid food. They were made of soy phosphatidylcholine (SPC) allowing the encapsulation of antioxidant vitamin C (VC) and tocopherol. Stearic acid (SA) or calcium stearate (CaS) was added as a bilayer stabilizer.

View Article and Find Full Text PDF

Emulsions are gaining increasing interest to be applied as drug delivery systems. The main goal of this work was the formulation of an oil/water nutraceutical emulsion (NE) for oral administration, enriched in omega 3 (ω3) and omega 6 (ω6), and able to encapsulate risperidone (RISP), an antipsychotic drug widely used in the treatment of autism spectrum disorders (ASD). RISP has low solubility in aqueous medium and poor bioavailability because of its metabolism and high protein binding.

View Article and Find Full Text PDF

Risperidone is an approved antipsychotic drug belonging to the chemical class of benzisoxazole. This drug has low solubility in aqueous medium and poor bioavailability due to extensive first-pass metabolism and high protein binding (>90%). Since new strategies to improve efficient treatments are needed, we studied the efficiency of anionic G4.

View Article and Find Full Text PDF

Vaccine development today encounters a main obstacle, which is the need for effective adjuvants suitable for clinical trials. Aluminum salts, discovered 70 years ago and, very recently, MF59, are the only types of adjuvants currently used in vaccines licensed by the U.S.

View Article and Find Full Text PDF

In this work, we analyzed protein interaction, cell toxicity, and biodistribution of liposome formulation for further possible applications as DNA vehicles in gene-therapy protocols. In relation to protein interaction, cationic liposomes showed the lowest protein interaction, but this parameter was incremented with DNA association. On the other hand, noncharged liposomes presented high protein interaction, but DNA association decreased this parameter.

View Article and Find Full Text PDF

Murine melanoma B16F0 cells were transfected with SA:DPPC:DOPE (2:1:1 molar ratio) liposomes associated with a plasmid encoding murine IL-12. Stearylamine, a cationic lipid, showed a greater transfection efficiency compared to DOTAP-containing liposomes. The lipid:DNA ratio was 2:1 (w/w).

View Article and Find Full Text PDF

MC-C fibrosarcoma and B16F0 melanoma tumors were implanted intradermally in the dorsal region of the foot of mice. Tumor progression was compared to standard implantation in the flank. Although foot tumors only reached 13% (MC-C) and 25% (B16F0) of the mean volume of flank tumors, a more malignant phenotype in terms of histology and survival rate was observed in this type of tumors.

View Article and Find Full Text PDF

In a previous work, we found that liposome hydrophobicity could affect deoxyribonucleic acid (DNA) association efficiency. Now, we have focused on the possible correlation between liposome hydrophobicity and DNA conformation. DNA lyophilized with cationic vesicles with high hydrophobicity changes its conformation into a more condensed form, probably the C form.

View Article and Find Full Text PDF

Small unilamellar vesicles associated with plasmid DNA showed maximum association efficiency for a cationic mixture of egg phosphatidylcholine (EPC):1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE):di-1,2-dioleoyl-3-trimethyl ammonium propane (DOTAP) (16:8:1 molar ratio) [65%], followed by neutral lipids EPC:1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE):cholesterol (Chol) (2:2:1 molar ratio) [30%], and a polymerized formulation 1,2-bis(10,12-tricosadiynoyl)sn-glycero-3-phosphocholine (DC8,9PC):DMPE:Chol (2:2:1 molar ratio) [11%]. The hydrophobicity factor (HF) for these formulations followed the trend DC8,9PC:DMPE:CHOL < EPC:DMPE:Chol < EPC:DOPE DOTAP, and DNA association did not alter this trend. Results suggest that the higher the HF value, the more fluid the membrane and the higher the efficiency of DNA association.

View Article and Find Full Text PDF

The stability of liposomal formulations is a key issue in drug delivery. Liposomes made of egg phosphatidylcholine (EPC), cholesterol (Chol), sphingomyelin (SM), and gangliosides (GM1 and GM type III) were incubated in different media to determine their stability. Mixtures containing GM1 or GM type III were found to be the most stable, and both showed similar stability trends in plasma at 37 degrees C.

View Article and Find Full Text PDF

In order to evaluate liposomes as vehicle for oral vaccines the characterization and stability of polymerized and non-polymerized liposomes were examined. Mixtures of 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3 phosphocholine) (DC8,9PC) with saturated 1,2-dimiristoyl-sn-glycero-3-phosphocholine in molar ratio 1:1 were used. Saturated and non-saturated lipids were combined to give a chemically modified membrane by UV polymerization derived from DC8,9PC.

View Article and Find Full Text PDF