Due to the specific properties provided by fluorine atoms to biomolecules, amino acids with fluorinated side chains are of great interest for medicinal chemistry and chemical biology. Among them, α-fluoroalkyl-α-amino acids constitute a unique class of compounds. In this review, we outline the strategies adopted for their syntheses in enantiopure or enantioenriched forms and their incorporation into peptides.
View Article and Find Full Text PDFCathepsin D (CD) is overexpressed in several types of cancer and constitutes an important biological target. Pepstatin A, a pentapeptide incorporating two non-proteinogenic statin residues, is among the most potent inhibitor of CD but lacks selectivity and suffers from poor bioavailability. Eight analogues of Pepstatin A, were synthesized, replacing residues in P3 or P1 position by non-canonical (S)- and (R)-α-Trifluoromethyl Alanine (TfmAla), (S)- and (R)-Trifluoromethionine (TFM) or non-natural d-Valine.
View Article and Find Full Text PDFWhile most research and treatments for multiple sclerosis (MS) focus on autoimmune reactions causing demyelination, it is possible that neurodegeneration precedes the autoimmune response. Hence, glutamate receptor antagonists preventing excitotoxicity showed promise in MS animal models, though blocking glutamate signaling prevents critical neuronal functions. This study reports the discovery of a small molecule that prevents AMPA-mediated excitotoxicity by targeting an allosteric binding site.
View Article and Find Full Text PDFA metabotropic glutamate receptor coupled to phospholipase D (PLD-mGluR) was discovered in the hippocampus over three decades ago. Its pharmacology and direct linkage to PLD activation are well established and indicate it is a highly atypical glutamate receptor. A receptor with the same pharmacology is present in spindle primary sensory terminals where its blockade can totally abolish, and its activation can double, the normal stretch-evoked firing.
View Article and Find Full Text PDFWe describe the chemical synthesis of the fungal naphthopyrones YWA1 and fonsecin B, as well as their functionalization with an amine-spacer arm and the conjugation of the resulting molecules to three different functional tags (i.e., biotin, Oregon green, 1-[3-(succinimidyloxycarbonyl)benzyl]-4-[5-(4-methoxyphenyl)-2-oxazolyl]pyridinium bromide (PyMPO)).
View Article and Find Full Text PDFThe tetrazine/-cyclooctene (TCO) inverse electron-demand Diels-Alder (IEDDA) reaction is the fastest bioorthogonal "click" ligation process reported to date. In this context, TCO reagents have found widespread applications; however, their availability and structural diversity is still somewhat limited due to challenges connected with their synthesis and structural modification. To address this issue, we developed a novel strategy for the conjugation of TCO derivatives to a biomolecule, which allows for the creation of greater structural diversity from a single precursor molecule, i.
View Article and Find Full Text PDFThe first generation of CB positive allosteric modulators (e.g., ZCZ011) featured a 3-nitroalkyl-2-phenyl-indole structure.
View Article and Find Full Text PDFResistance to infection is critically dependent on the ability of pattern recognition receptors to recognize microbial invasion and induce protective immune responses. One such family of receptors are the C-type lectins, which are central to antifungal immunity. These receptors activate key effector mechanisms upon recognition of conserved fungal cell-wall carbohydrates.
View Article and Find Full Text PDFThe cannabinoid signaling system is found throughout the CNS and its involvement in several pathological processes makes it an attractive therapeutic target. Because orthosteric CB1 cannabinoid receptor ligands have undesirable adverse effects there has been great interest in the development of allosteric modulators - both negative (NAMs) and positive (PAMs) - of these receptors. NAMs of CB appeared first on the scene, followed more recently by PAMs.
View Article and Find Full Text PDFWe report the synthesis of terminally fluorinated HU-210 and HU-211 analogues (HU-210F and HU-211F, respectively) and their biological evaluation as ligands of cannabinoid receptors (CB and CB) and N-methyl d-aspartate receptor (NMDAR). [F]-labelled HU-210F was radiosynthesised from the bromo-substituted precursor. In vitro assays showed that both HU-210F and HU-211F retain the potent pharmacological profile of HU-210 and HU-211, suggesting that [F]-radiolabelled HU-210F and HU-211F could have potential as PET tracers for in vivo imaging.
View Article and Find Full Text PDFDimethylarginine dimethylaminohydrolase (DDAH) is a key enzyme involved in the metabolism of asymmetric dimethylarginine (ADMA) and N-monomethyl arginine (NMMA), which are endogenous inhibitors of the nitric oxide synthase (NOS) family of enzymes. Two isoforms of DDAH have been identified in humans, DDAH-1 and DDAH-2. DDAH-1 inhibition represents a promising strategy to limit the overproduction of NO in pathological states without affecting the homeostatic role of this important messenger molecule.
View Article and Find Full Text PDFThe CB1 receptor represents a promising target for the treatment of several disorders including pain-related disease states. However, therapeutic applications of Δ(9)-tetrahydrocannabinol and other CB1 orthosteric receptor agonists remain limited because of psychoactive side effects. Positive allosteric modulators (PAMs) offer an alternative approach to enhance CB1 receptor function for therapeutic gain with the promise of reduced side effects.
View Article and Find Full Text PDFA high-performance liquid chromatography tandem mass spectrometry method was developed for the detection and quantification of 6-methyl-3-(2-nitro-1-(thiophen-2-yl)propyl)-2-phenyl-1H-indole (ZCZ-011) using 2-phenylindole as the internal standard (ISTD). ZCZ-011 was synthesized as a possible positive allosteric modulator with the CB1 cannabinoid receptor. The analytical method employs a rapid extraction technique using Clean Screen FASt™ columns with a Positive Pressure Manifold.
View Article and Find Full Text PDF(-)-Kainic acid potently increases stretch-induced afferent firing in muscle spindles, probably acting through a hitherto uncloned phospholipase D (PLD)-coupled mGlu receptor. Structural modification of (-)-kainic acid was undertaken to explore the C-4 substituent effect on the pharmacology related to muscle spindle firing. Three analogues 1a-c were synthesised by highly stereoselective additions of a CF3, a hydride and an alkynyl group to the Re face of the key pyrrolidin-4-one intermediate 5a followed by further structural modifications.
View Article and Find Full Text PDF