Publications by authors named "Chiara Trovatello"

Localized states in two-dimensional (2D) transition metal dichalcogenides (TMDCs) have been the subject of intense study, driven by potential applications in quantum information science. Despite the rapidly growing knowledge surrounding these emitters, their microscopic nature is still not fully understood, limiting their production and application. Motivated by this challenge, and by recent theoretical and experimental evidence showing that nanowrinkles generate strain-localized room-temperature emitters, we demonstrate a method to intentionally induce wrinkles with collections of stressors, showing that long-range wrinkle direction and position are controllable with patterned array design.

View Article and Find Full Text PDF

Waveguides play a key role in the implementation of on-chip optical elements and, therefore, lie at the heart of integrated photonics. To add the functionalities of layered materials to existing technologies, dedicated fabrication protocols are required. Here, we build on laser writing to pattern grating structures into bulk noncentrosymmetric transition metal dichalcogenides with grooves as sharp as 250 nm.

View Article and Find Full Text PDF

The coupling of the electron system to lattice vibrations and their time-dependent control and detection provide unique insight into the nonequilibrium physics of semiconductors. Here, we investigate the ultrafast transient response of semiconducting monolayer 2-MoTe encapsulated with BN using broadband optical pump-probe microscopy. The sub-40 fs pump pulse triggers extremely intense and long-lived coherent oscillations in the spectral region of the A' and B' exciton resonances, up to ∼20% of the maximum transient signal, due to the displacive excitation of the out-of-plane phonon.

View Article and Find Full Text PDF
Article Synopsis
  • * The research outlines strategies for enhancing spontaneous parametric downconversion, enabling the generation of biphoton states with suitable spectral bandwidth in the visible range.
  • * The study also introduces methods to design and measure the spectral correlations between photon pairs, suggesting that these techniques could be used as a new platform for investigating interactions in materials.
View Article and Find Full Text PDF

Nonlinear interactions between excitons strongly coupled to light are key for accessing quantum many-body phenomena in polariton systems. Atomically-thin two-dimensional semiconductors provide an attractive platform for strong light-matter coupling owing to many controllable excitonic degrees of freedom. Among these, the recently emerged exciton hybridization opens access to unexplored excitonic species, with a promise of enhanced interactions.

View Article and Find Full Text PDF

Transient absorption spectroscopy is a powerful tool to monitor the out-of-equilibrium optical response of photoexcited semiconductors. When this method is applied to two-dimensional semiconductors deposited on different substrates, the excited state optical properties are inferred from the pump-induced changes in the transmission/reflection of the probe, i.e.

View Article and Find Full Text PDF

Bismuth telluride halides (BiTeX) are Rashba-type crystals with several potential applications ranging from spintronics and nonlinear optics to energy. Their layered structures and low cleavage energies allow their production in a two-dimensional form, opening the path to miniaturized device concepts. The possibility to exfoliate bulk BiTeX crystals in the liquid represents a useful tool to formulate a large variety of functional inks for large-scale and cost-effective device manufacturing.

View Article and Find Full Text PDF

In single-layer (1L) transition metal dichalcogenides, the reduced Coulomb screening results in strongly bound excitons which dominate the linear and the nonlinear optical response. Despite the large number of studies, a clear understanding on how many-body and Coulomb correlation effects affect the excitonic resonances on a femtosecond time scale is still lacking. Here, we use ultrashort laser pulses to measure the transient optical response of 1L-WS.

View Article and Find Full Text PDF

Many promising optoelectronic devices, such as broadband photodetectors, nonlinear frequency converters, and building blocks for data communication systems, exploit photoexcited charge carriers in graphene. For these systems, it is essential to understand the relaxation dynamics after photoexcitation. These dynamics contain a sub-100 fs thermalization phase, which occurs through carrier-carrier scattering and leads to a carrier distribution with an elevated temperature.

View Article and Find Full Text PDF

Monolayer transition metal dichalcogenides (ML-TMDs) are two-dimensional semiconductors that stack to form heterostructures (HSs) with tailored electronic and optical properties. TMD/TMD-HSs like WS/MoS have type II band alignment and form long-lived (nanosecond) interlayer excitons following sub-100 fs interlayer charge transfer (ICT) from the photoexcited intralayer exciton. While many studies have demonstrated the ultrafast nature of ICT processes, we still lack a clear physical understanding of ICT due to the trade-off between temporal and frequency resolution in conventional transient absorption spectroscopy.

View Article and Find Full Text PDF

Monolayer transition metal dichalcogenides bear great potential for photodetection and light harvesting due to high absorption coefficients. However, these applications require dissociation of strongly bound photogenerated excitons. The dissociation can be achieved by vertically stacking different monolayers to realize band alignment that favors interlayer charge transfer.

View Article and Find Full Text PDF

Single-layer transition metal dichalcogenides are at the center of an ever increasing research effort both in terms of fundamental physics and applications. Exciton-phonon coupling plays a key role in determining the (opto)electronic properties of these materials. However, the exciton-phonon coupling strength has not been measured at room temperature.

View Article and Find Full Text PDF

We calculate the time evolution of the transient reflection signal in an MoS monolayer on a SiO/Si substrate using first-principles out-of-equilibrium real-time methods. Our simulations provide a simple and intuitive physical picture for the delayed, yet ultrafast, evolution of the signal whose rise time depends on the excess energy of the pump laser: at laser energies above the A- and B-exciton, the pump pulse excites electrons and holes far away from the K valleys in the first Brillouin zone. Electron-phonon and hole-phonon scattering lead to a gradual relaxation of the carriers toward small around K, enhancing the dielectric screening.

View Article and Find Full Text PDF

The equilibrium and non-equilibrium optical properties of single-layer transition metal dichalcogenides (TMDs) are determined by strongly bound excitons. Exciton relaxation dynamics in TMDs have been extensively studied by time-domain optical spectroscopies. However, the formation dynamics of excitons following non-resonant photoexcitation of free electron-hole pairs have been challenging to directly probe because of their inherently fast timescales.

View Article and Find Full Text PDF

We present a transient absorption setup combining broadband detection over the visible-UV range with high temporal resolution (∼20 fs) which is ideally suited to trigger and detect vibrational coherences in different classes of materials. We generate and detect coherent phonons (CPs) in single-layer (1L)-MoS, as a representative semiconducting 1L-transition metal dichalcogenide (TMD), where the confined dynamical interaction between excitons and phonons is unexplored. The coherent oscillatory motion of the out-of-plane A' phonons, triggered by the ultrashort laser pulses, dynamically modulates the excitonic resonances on a time scale of few tens of fs.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session6skn4td6bspej7sbvktv834oi162icq4): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once