Osteosarcoma is one of the most common primary malignant bone tumours in children and adolescents, frequently arising from mesenchymal tissue in the distal femur. It is highly aggressive, often metastasising to the lungs. Current treatments, which include surgery combined with neoadjuvant chemotherapy and radiotherapy, are often unsatisfactory due to the inability of surgery to control metastasis and the side effects and drug resistance associated with chemotherapy.
View Article and Find Full Text PDFChronic wounds represent a significant global health concern, statistically impacting 1-2% of the population in developed countries throughout their lifetimes. These wounds cause considerable discomfort for patients and necessitate substantial expenditures of time and resources for treatment. Among the emerging therapeutic approaches, medicated dressings incorporating bioactive molecules, including natural compounds, are particularly promising.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer, a leading cause of cancer-related deaths globally. Initial lesions of PDAC develop within the exocrine pancreas' functional units, with tumor progression driven by interactions between PDAC and stromal cells. Effective therapies require anatomically and functionally relevanthuman models of the pancreatic cancer microenvironment.
View Article and Find Full Text PDFSeveral diseases affect the alveoli, and the efficacy of medical treatments and pharmaceutical therapies is hampered by the lack of pre-clinical models able to recreate the diseases. Microfluidic devices, mimicking the key structural and compositional features of the alveoli, offer several advantages to medium and high-throughput analysis of new candidate therapies. Here, we developed an alveolus-on-a-chip recapitulating the microanatomy of the physiological tissue by including the epithelium, the fibrous interstitial layer and the capillary endothelium.
View Article and Find Full Text PDFAlveoli are the functional area of respiratory system where the gaseous exchanges take place at level of the alveolar-capillary barrier. The development of safe and effective therapeutic approaches for treating lung disease is currently limited due to the lack of realistic preclinical models for their testing and validation. In this work, tissue engineering approaches were exploited to develop a biomimetic platform that provide an appropriate mimicking of the extracellular environment and the multicellular architecture of human alveoli.
View Article and Find Full Text PDFBiomass resulting from food production represents valuable material to recover different biomolecules. In our study, we used apple pomace to obtain pectin, which is traditionally extracted using mineral acids. Our hypothesis consisted of carrying out extractions with organic acids, assisted by ultrasound, by varying processing parameters including time, temperature, and type of acid.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) mainly develops in the head of the pancreas, within the acino-ductal unit composed of acinar and ductal cells surrounded by pancreatic stellate cells (PSCs). PSCs strongly influence the tumor microenvironment by triggering an intense stromal deposition, which plays a key role in tumor progression and limits drug perfusion. We have developed a microfluidic model recreating the tumor-stroma crosstalk to replicate the steps of PDAC evolution towards the establishment of an efficient platform for innovative therapy validation.
View Article and Find Full Text PDFThe multifunctional properties of antimicrobial peptides (AMPs) make them attractive candidates for the treatment of various diseases. AMPs are considered as alternatives to antibiotics due to the increasing number of multidrug-resistant (MDR) bacteria. However, bare AMPs have limited therapeutic potentials due to a low residence time in the blood circulatory system and susceptibility to proteases and an alkaline wound environment.
View Article and Find Full Text PDFAntimicrobial peptides (AMPs), such as LL37 peptides, may be immobilized on the surface of medical devices to render them with antimicrobial and angiogenic properties. However, little is known about LL37 properties after immobilization. Here, we have studied the antimicrobial and pro-angiogenic activity of soluble and immobilized LL37 peptides (conjugated to gold nanoparticles).
View Article and Find Full Text PDFConductive polymers (CPs) have recently been applied in the development of scaffolds for tissue engineering applications in attempt to induce additional cues able to enhance tissue growth. Polyaniline (PANI) is one of the most widely studied CPs, but it requires to be blended with other polymers in order to be processed through conventional technologies. Here, we propose the fabrication of nanofibers based on a polycaprolactone (PCL)-PANI blend obtained using electrospinning technology.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2021
Abdominal hernia repair is a frequently performed surgical procedure worldwide. Currently, the use of polypropylene (PP) surgical meshes for the repair of abdominal hernias constitutes the primary surgical approach, being widely accepted as superior to primary suture repair. Surgical meshes act as a reinforcement for the weakened or damaged tissues and support tissue restoration.
View Article and Find Full Text PDFThe high drug loading capacity, cytocompatibility and easy functionalization of ordered mesoporous carbons (OMCs) make them attractive nanocarriers to treat several pathologies. OMCs' efficiency could be further increased by embedding them into a hydrogel phase for an prolonged drug release. In this work, OMCs were embedded into injectable thermosensitive hydrogels.
View Article and Find Full Text PDFReduced periodontal support, deriving from chronic inflammatory conditions, such as periodontitis, is one of the main causes of tooth loss. The use of dental implants for the replacement of missing teeth has attracted growing interest as a standard procedure in clinical practice. However, adequate bone volume and soft tissue augmentation at the site of the implant are important prerequisites for successful implant positioning as well as proper functional and aesthetic reconstruction of patients.
View Article and Find Full Text PDFThe development of new bio-based inks is a stringent request for the expansion of additive manufacturing towards the development of 3D-printed biocompatible hydrogels. Herein, methacrylated carboxymethyl cellulose (M-CMC) is investigated as a bio-based photocurable ink for digital light processing (DLP) 3D printing. CMC is chemically modified using methacrylic anhydride.
View Article and Find Full Text PDFLight processable hydrogels were successfully fabricated by utilizing maize starch as raw material. To render light processability, starch was gelatinized and methacrylated by simple reaction with methacrylic anhydride. The methacrylated starch was then evaluated for its photocuring reactivity and 3D printability by digital light processing (DLP).
View Article and Find Full Text PDFInjectable therapeutic formulations locally releasing their cargo with tunable kinetics in response to external biochemical/physical cues are gaining interest in the scientific community, with the aim to overcome the cons of traditional administration routes. In this work, we proposed an alternative solution to this challenging goal by combining thermo-sensitive hydrogels based on custom-made amphiphilic poly(ether urethane)s (PEUs) and mesoporous silica nanoparticles coated with a self-immolative polymer sensitive to acid pH (MSN-CS-SIP). By exploiting PEU chemical versatility, Boc-protected amino groups were introduced as PEU building block (PEU-Boc), which were then subjected to a deprotection reaction to expose pendant primary amines along the polymer backbone (PEU-NH, 3E18 -NH/g) with the aim to accelerate system response to external acid pH environment.
View Article and Find Full Text PDFThe use of antibiotics has been the cornerstone to prevent bacterial infections; however, the emergency of antibiotic-resistant bacteria is still an open challenge. This work aimed to develop a delivery system for treating soft tissue infections for: (1) reducing the released antimicrobial amount, preventing drug-related systemic side effects; (2) rediscovering the beneficial effects of naturally derived agents; and (3) preserving the substrate functional properties. For the first time, Manuka honey (MH) was proposed as polyelectrolyte within the layer-by-layer assembly.
View Article and Find Full Text PDFArticular cartilage (AC) lacks the ability to self-repair and cell-based approaches, primarily based on using chondrocytes and mesenchymal stem cells (MSCs), are emerging as effective technology to restore cartilage functionality, because cells synergic functionality may support the maintenance of chondrogenic phenotype and promote extracellular matrix regeneration. This work aims to develop a more physiologically representative co-culture system to investigate the influence of MSCs on the activity of chondrocytes. A thermo-sensitive chitosan-based hydrogel, ionically crosslinked with β-glycerophosphate, is optimised to obtain sol/gel transition at physiological conditions within 5 minutes, high porosity with pores diameter <30 µm, and in vitro mechanical integrity with compressive and equilibrium Young's moduli of 37 kPa and 17 kPa, respectively.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
May 2020
Scaffold pore size plays a fundamental role in the regeneration of new tissue since it has been shown to direct cell activity in situ. It is well known that cellular response changes in relation with pores diameter. Consequently, researchers developed efficient approaches to realize scaffolds with controllable macro-, micro-, and nanoporous architecture.
View Article and Find Full Text PDFThe coatings application onto medical devices has experienced a continuous growth in the last few years. Medical device coating market is expected to grow at a CAGR of 5.16% to reach USD 10 million by 2023 due to the increasing geriatric population and the growing demand for continuous innovation.
View Article and Find Full Text PDFThe Quartz Crystal Microbalance with dissipation monitoring (QCM-D) is a tool to measure mass and viscosity in processes occurring at or near surfaces, or within thin films. QCM-D is able to detect extremely small chemical, mechanical, and electrical changes taking place on the sensor surface and to convert them into electrical signals which can be investigated to study dynamic process. Surface nanotopography and chemical composition are of pivotal importance in biomedical applications since interactions of medical devices with the physiological environment are mediated by surface features.
View Article and Find Full Text PDFHypothesis: Wound healing is a complex process that often requires treatment with antibacterial agents to avoid infection, which affects the optimal tissue regeneration process. Ideal scaffolds for wound healing treatment should combine biomimetic features to ensure the tissue growth on properly designed extracellular matrix (ECM)-like scaffolds and antibacterial properties in order to avoid bacterial colonization.
Experiments: In this work, gelatin cross-linked nanofibers (GL-nanofibres), with diameters ranging from 200 to 300 nm, were prepared via a "green electrospinning technique" to mimic the structure and composition of the extracellular matrix (ECM), and promote the normal skin wound healing process.
Nerve guidance channels facilitate nerve regeneration and represent an attractive alternative to nerve graft. Actually, nano- and microstructured biomaterials for nerve reconstruction have gained much attention, thanks to recent discoveries about topography effects on cell behavior and morphology. Electrospun fibres have been proposed as filler or structural component for nerve guidance channels, principally due to their similarity with extracellular matrices which facilitate nerve regeneration.
View Article and Find Full Text PDFAlzheimer's and Parkinson's diseases are the most common neurodegenerative diseases worldwide and their incidence is increasing due to the aging population. At the moment, the available therapies are not disease modifying and have several limitations, some of which are discussed in this review. One of the main limitations of these treatments is the low concentration that drugs reach in the central nervous system after systemic administration.
View Article and Find Full Text PDF