Publications by authors named "Chiara Scribani-Rossi"

Antimicrobial resistance is responsible for an alarming number of deaths, estimated at 5 million per year. To combat priority pathogens, like , the development of novel therapies is of utmost importance. Understanding the molecular alterations induced by medications is critical for the design of multi-targeting treatments capable of eradicating the infection and mitigating its pathogenicity.

View Article and Find Full Text PDF

Beyond their role as protein-building units, amino acids are modulators of multiple behaviours in different microorganisms. In the root-colonizing beneficial bacterium Pseudomonas putida (recently proposed to be reclassified as alloputida) KT2440, current evidence suggests that arginine functions both as a metabolic indicator and as an environmental signal molecule, modulating processes such as chemotactic responses, siderophore-mediated iron uptake or the levels of the intracellular second messenger cyclic diguanylate (c-di-GMP). Using microcalorimetry and extracellular flux analysis, in this work we have studied the metabolic adaptation of P.

View Article and Find Full Text PDF

The ability of many bacteria to form biofilms contributes to their resilience and makes infections more difficult to treat. Biofilm growth leads to the formation of internal oxygen gradients, creating hypoxic subzones where cellular reducing power accumulates, and metabolic activities can be limited. The pathogen Pseudomonas aeruginosa counteracts the redox imbalance in the hypoxic biofilm subzones by producing redox-active electron shuttles (phenazines) and by secreting extracellular matrix, leading to an increased surface area-to-volume ratio, which favors gas exchange.

View Article and Find Full Text PDF

Environmental nutrients control bacterial biofilm homeostasis, by regulating the intracellular levels of c-di-GMP. One component transducers can sense different classes of small molecules through a periplasmic domain; the nutrient recognition triggers the subsequent regulation of the downstream cytosolic diguanylate cyclase (GGDEF) or phosphodiesterase (EAL) domains, via transmembrane helix(ces), to finally change c-di-GMP levels.Protein studies on such transducers have been mainly carried out on isolated domains due to the presence of the transmembrane portion.

View Article and Find Full Text PDF

Amino acids are crucial in nitrogen cycling and to shape the metabolism of microorganisms. Among them, arginine is a versatile molecule able to sustain nitrogen, carbon, and even ATP supply and to regulate multicellular behaviors such as biofilm formation. Arginine modulates the intracellular levels of 3'-5'cyclic diguanylic acid (c-di-GMP), a second messenger that controls biofilm formation, maintenance and dispersion.

View Article and Find Full Text PDF

Bacterial biofilm represents a multicellular community embedded within an extracellular matrix attached to a surface. This lifestyle confers to bacterial cells protection against hostile environments, such as antibiotic treatment and host immune response in case of infections. The genus is characterised by species producing strong biofilms difficult to be eradicated and by an extraordinary metabolic versatility which may support energy and carbon/nitrogen assimilation under multiple environmental conditions.

View Article and Find Full Text PDF

GGDEF-containing proteins respond to different environmental cues to finely modulate cyclic diguanylate (c-di-GMP) levels in time and space, making the allosteric control a distinctive trait of the corresponding proteins. The diguanylate cyclase mechanism is emblematic of this control: two GGDEF domains, each binding one GTP molecule, must dimerize to enter catalysis and yield c-di-GMP. The need for dimerization makes the GGDEF domain an ideal conformational switch in multidomain proteins.

View Article and Find Full Text PDF