Publications by authors named "Chiara Parravicini"

Toxic aggregates of α-synuclein (αsyn) are considered key drivers of Parkinson's disease (PD) pathology. In early PD, αsyn induces synaptic dysfunction also modulating the glutamatergic neurotransmission. However, a more detailed understanding of the molecular mechanisms underlying αsyn-triggered synaptic failure is required to design novel therapeutic interventions.

View Article and Find Full Text PDF

Characterization of new pharmacological targets is a promising approach in research of neurorepair mechanisms. The G protein-coupled receptor 17 (GPR17) has recently been proposed as an interesting pharmacological target, e.g.

View Article and Find Full Text PDF
Article Synopsis
  • Monoclonal antibodies (mAbs) are vital biopharmaceuticals, primarily relying on the Fc portion's interaction with Fcγ receptors to mediate immune responses, where N-glycosylation plays a crucial role.
  • This research utilized in silico methods to analyze how different glycosylation patterns, particularly fucose, affect the 3D structure and flexibility of mAbs, using adalimumab as a model.
  • The findings suggest that fucose introduces conformational constraints affecting receptor interaction and highlights the role of glycan-induced asymmetry in antibody structure, potentially guiding future drug development strategies.
View Article and Find Full Text PDF

Epigenetics is one of the mechanisms by which environmental factors can alter brain function and may contribute to central nervous system disorders. Alterations of DNA methylation and miRNA expression can induce long-lasting changes in neurobiological processes. Hence, we investigated the effect of chronic stress, by employing the chronic mild stress (CMS) and the chronic restraint stress protocol, in adult male rats, on the glucocorticoid receptor (GR) function.

View Article and Find Full Text PDF

Lecithin:cholesterol-acyl transferase (LCAT) plays a major role in cholesterol metabolism as it is the only extracellular enzyme able to esterify cholesterol. LCAT activity is required for lipoprotein remodeling and, most specifically, for the growth and maturation of HDLs. In fact, genetic alterations affecting LCAT functionality may cause a severe reduction in plasma levels of HDL-cholesterol with important clinical consequences.

View Article and Find Full Text PDF
Article Synopsis
  • GnRH deficiency causes a rare genetic problem called hypogonadotropic hypogonadism (HH), which affects sexual reproduction and may be linked to other disorders.
  • Researchers wanted to see how a mutation in the SEMA3G gene contributes to HH, especially in cases with other symptoms like intellectual disability.
  • They discovered that SEMA3G is important for the movement of GnRH neurons and that its mutation can change how these neurons behave, which might lead to the problems seen in HH.
View Article and Find Full Text PDF
Article Synopsis
  • The GPR17 receptor, found on oligodendroglial precursors, is a promising target for developing treatments that promote myelin production in multiple sclerosis (MS).
  • Researchers screened over 1,000,000 compounds to find selective agents that can activate GPR17, going through a multi-step testing and refinement process.
  • One promising compound, galinex, was shown to significantly delay the onset of experimental autoimmune encephalomyelitis (EAE), supporting the effectiveness of their drug discovery approach for discovering new MS treatments.
View Article and Find Full Text PDF
Article Synopsis
  • The study examined surface plasmon resonance (SPR) spectroscopy to measure real-time ligand-binding affinities and kinetic parameters for GPR17, a GPCR relevant to treating demyelinating diseases.
  • It successfully captured the receptor on a sensor chip, retaining its binding activity for over 24 hours and allowing for reuse after mild regeneration.
  • The findings, including binding constants and functional assays, revealed important insights into how GPR17 interacts with ligands like Cangrelor and Asinex 1, with Asinex 1 identified as an effective agonist promoting cell maturation.
View Article and Find Full Text PDF

To improve the current understanding of the role of stilbenoids in the management of diabetes, the inhibition of the pancreatic α-amylase by resveratrol derivatives was investigated. To approach in a systematic way, the mechanistic and structural aspects of the interaction, potential bioactive agents were prepared as single molecules, that were used for the biological evaluation of the determinants of inhibitory binding. Some dimeric stilbenoids-in particular, viniferin isomers- were found to be better than the reference drug acarbose in inhibiting the pancreatic α-amylase.

View Article and Find Full Text PDF

Monoacylglycerol lipase (MAGL) is a serine hydrolase that has a key regulatory role in controlling the levels of 2-arachidonoylglycerol (2-AG), the main signaling molecule in the endocannabinoid system. Identification of selective modulators of MAGL enables both to provide new tools for investigating pathophysiological roles of 2-AG, and to discover new lead compounds for drug design. The development of sensitive and reliable methods is crucial to evaluate this modulatory activity.

View Article and Find Full Text PDF

The complex interactions among proteins and of proteins with small molecular weight protein ligands are overturned every time one of the components of the network is missing. For study purposes, animal models lacking one protein are obtained by experimental manipulation of the genome: in the knocking out approach, a gene is altered through the insertion of an artificial DNA sequence, which halts the transcription-translation sequence of events. In this review we have compiled the research papers that analyze the effects of knocking out individual genes on the proteomes of various tissues/organs throughout the body.

View Article and Find Full Text PDF

Background: Nonsteroidal anti-inflammatory drugs (NSAIDs) have been proposed as chemopreventive agents for many tumours; however, the mechanism responsible for their anti-neoplastic activity remains elusive and the side effects due to cyclooxygenase (COX) inhibition prevent this clinical application.

Methods: Molecular biology, in silico, cellular and in vivo tools, including innovative in vivo imaging and classical biochemical assays, were applied to identify and characterise the COX-independent anti-cancer mechanism of NSAIDs.

Results: Here, we show that tumour-protective functions of NSAIDs and exisulind (a sulindac metabolite lacking anti-inflammatory activity) occur through a COX-independent mechanism.

View Article and Find Full Text PDF

The molecular mechanism of transport mediated by LAT1, a sodium-independent antiporter of large neutral amino acids, was investigated through procedures, specifically making reference to two transported substrates, tyrosine (Tyr) and leucine methyl ester (LME), and to 3,5-diiodo-L-tyrosine (DIT), a well-known LAT1 inhibitor. Two models of the transporter were built by comparative modeling, with LAT1 either in an outward-facing (OF) or in an inward-facing (IF) conformation, based, respectively, on the crystal structure of AdiC and of GadC. As frequently classic Molecular Dynamics (MD) fails to monitor large-scale conformational transitions within a reasonable simulated time, the OF structure was equilibrated for 150 ns then processed through targeted MD (tMD).

View Article and Find Full Text PDF

Monoacylglycerol lipase (MAGL) has an essential role in the catabolic pathway of the endocannabinoid 2-arachidonoylglycerol, which makes it a potential target for highly specific inhibitors for the treatment of a number of diseases. We designed and synthesized a series of carbamate analogues of URB602. We evaluated their inhibitory activity toward human MAGL in vitro both in cell culture and lysates.

View Article and Find Full Text PDF

Notch signaling plays an important role in several cellular functions including growth, differentiation, cell fate determination and stemness. Increased Notch activity has been linked to several types of cancers. Activation of Notch signaling is triggered by the interaction of Notch receptors (Notch1-4) with 5 different ligands (Jagged1-2 and Dll1-3-4) expressed on the neighbouring cells.

View Article and Find Full Text PDF

Unlabelled: Differences related to gender have long been neglected but recent investigations show that they are widespread and may be recognized with all types of omics approaches, both in tissues and in biological fluids. Our review compiles evidence collected with proteomics techniques in our species, mainly focusing on baseline parameters in non-sexual organs in healthy men and women. Data from human specimens had to be replaced with information from other mammals every time invasive procedures of sample procurement were involved.

View Article and Find Full Text PDF

Unlabelled: In continuity with the review dealing with differences by gender in non-sexual organs [1], this review collects data on the proteomes of the sexual organs as involved in human reproduction, under both physiological and pathological conditions. It also collects data on the tissue structures and biological fluids typical of pregnancy, such as placenta and amniotic fluid, as well as what may be tested on preimplantation embryos during medically assisted reproduction. The review includes as well mention to all fluids and secretions connected with sex organs and/or reproduction, including sperm and milk, to exemplify two distinctive items in male and female physiology.

View Article and Find Full Text PDF

In 2006, cells heterologously expressing the "orphan" receptor GPR17 were shown to acquire responses to both uracil nucleotides and cysteinyl-leukotrienes, two families of signaling molecules accumulating in brain or heart as a result of hypoxic/traumatic injuries. In subsequent years, evidence of GPR17 key role in oligodendrogenesis and myelination has highlighted it as a "model receptor" for new therapies in demyelinating and neurodegenerative diseases. The apparently contrasting evidence in the literature about the role of GPR17 in promoting or inhibiting myelination can be due to its transient expression in the intermediate stages of differentiation, exerting a pro-differentiating function in early oligodendrocyte precursor cells (OPCs), and an inhibitory role in late stage maturing cells.

View Article and Find Full Text PDF

GM1 ganglioside (II NeuAc-Gg Cer) is known to promote neurite formation in neuroblastoma cells by activating TrkA-MAPK pathway. The molecular mechanism by which GM1 is involved in the neurodifferentiation process is still unknown, however, in vitro and in vivo evidences have suggested that the oligosaccharide portion of this ganglioside could be involved. Here, we report that, similarly to the entire GM1 molecule, its oligosaccharide II NeuAc-Gg rather than its ceramide (Cer) portion is responsible for the neurodifferentiation process by augmenting neurite elongation and increasing the neurofilament protein expression in murine neuroblastoma cells, Neuro2a.

View Article and Find Full Text PDF

The LAT1 transporter is acknowledged as a pharmacological target of tumours since it is strongly overexpressed in many human cancers. The purpose of this work was to find novel compounds exhibiting potent and prolonged inhibition of the transporter. To this aim, compounds based on dithiazole and dithiazine scaffold have been screened in the proteoliposome experimental model.

View Article and Find Full Text PDF

Background: LAT1 (SLC7A5) is the transport competent unit of the heterodimer formed with the glycoprotein CD98 (SLC3A2). It catalyzes antiport of His and some neutral amino acids such as Ile, Leu, Val, Cys, Met, Gln and Phe thus being involved in amino acid metabolism. Interestingly, LAT1 is over-expressed in many human cancers that are characterized by increased demand of amino acids.

View Article and Find Full Text PDF

The first sections of this review compile and discuss strategies and protocols for managing plasma/serum as a source of biomarkers relevant to human disease. In many such cases, depletion of abundant protein(s) is a crucial preliminary step to the procedure; specific conceptual and technical approaches, however, make it possible to effectively use to this purpose whole plasma/serum. The final sections focus instead on the complexity associated with each of the major serum/plasma proteins in terms of both, multiple molecular structures (existence of a number of protein species) and of multiple molecular functions (behavior as multifunctional/multitasking/moonlighting proteins).

View Article and Find Full Text PDF

Recent data and publications suggest a promiscuous behaviour for GPR17, a class-A GPCR operated by different classes of ligands, such as uracil nucleotides, cysteinyl-leukotrienes and oxysterols. This observation, together with the ability of several class-A GPCRs to form homo- and hetero-dimers, is likely to unveil new pathophysiological roles and novel emerging pharmacological properties for some of these GPCRs, including GPR17. This receptor shares structural, phylogenetic and functional properties with some chemokine receptors, CXCRs.

View Article and Find Full Text PDF

A recombinant ketoreductase from Pichia glucozyma (KRED1-Pglu) was used for the enantioselective reduction of various mono-substituted acetophenones. Reaction rates of meta- and para-derivatives were consistent with the electronic effects described by σ-Hammett coefficients; on the other hand, enantioselectivity was determined by an opposite orientation of the substrate in the binding pocket. Reduction of ortho-derivatives occurred only with substrates bearing substituents with low steric impact (i.

View Article and Find Full Text PDF

This review outlines the computational approaches and procedures for predicting post translational modification (PTM)-induced changes in protein conformation and their influence on protein function(s), the latter being assessed as differential affinity in interaction with either low (ligands for receptors or transporters, substrates for enzymes) or high molecular mass molecules (proteins or nucleic acids in supramolecular assemblies). The scope for an in silico approach is discussed against a summary of the in vitro evidence on the structural and functional outcome of protein PTM.

View Article and Find Full Text PDF