We present a systematic study of two widely used material structure prediction methods, the Genetic Algorithm and Basin Hopping approaches to global optimization, in a search for the 3 × 3, 5 × 5, and 7 × 7 reconstructions of the Si(111) surface. The Si(111) 7 × 7 reconstruction is the largest and most complex surface reconstruction known, and finding it is a very exacting test for global optimization methods. In this paper, we introduce a modification to previous Genetic Algorithm work on structure search for periodic systems, to allow the efficient search for surface reconstructions, and present a rigorous study of the effect of the different parameters of the algorithm.
View Article and Find Full Text PDFLithium-graphite intercalation compounds (Li-GICs) are the most popular anode material for modern lithium-ion batteries and have been subject to numerous studies-both experimental and theoretical. However, the system is still far from being consistently understood in detail across the full range of state of charge (SOC). The performance of approaches based on density functional theory (DFT) varies greatly depending on the choice of functional, and their computational cost is far too high for the large supercells necessary to study dilute and non-equilibrium configurations which are of paramount importance for understanding a complete charging cycle.
View Article and Find Full Text PDFLithium ion batteries have been a central part of consumer electronics for decades. More recently, they have also become critical components in the quickly arising technological fields of electric mobility and intermittent renewable energy storage. However, many fundamental principles and mechanisms are not yet understood to a sufficient extent to fully realize the potential of the incorporated materials.
View Article and Find Full Text PDFThe Density-Functional Tight Binding (DFTB) method is a popular semiempirical approximation to Density Functional Theory (DFT). In many cases, DFTB can provide comparable accuracy to DFT at a fraction of the cost, enabling simulations on length and time scales that are unfeasible with first-principles DFT. At the same time (and in contrast to empirical interatomic potentials and force fields), DFTB still offers direct access to electronic properties such as the band structure.
View Article and Find Full Text PDFThis review article is intended as a practical guide for newcomers to the field of kinetic Monte Carlo (KMC) simulations, and specifically to lattice KMC simulations as prevalently used for surface and interface applications. We will provide worked out examples using the kmos code, where we highlight the central approximations made in implementing a KMC model as well as possible pitfalls. This includes the mapping of the problem onto a lattice and the derivation of rate constant expressions for various elementary processes.
View Article and Find Full Text PDFEfficient structure search is a major challenge in computational materials science. We present a modification of the basin hopping global geometry optimization approach that uses a curvilinear coordinate system to describe global trial moves. This approach has recently been shown to be efficient in structure determination of clusters [C.
View Article and Find Full Text PDFIdentification of relevant reaction pathways in ever more complex composite materials and nanostructures poses a central challenge to computational materials discovery. Efficient global structure search, tailored to identify chemically relevant intermediates, could provide the necessary first-principles atomistic insight to enable a rational process design. In this work we modify a common feature of global geometry optimization schemes by employing automatically generated collective curvilinear coordinates.
View Article and Find Full Text PDFIn this work, we have computationally modeled the adsorption of 1,3-diiodobenzene (meta-diiodobenzene or m-DIB) on Cu(1 1 0) by means of density functional theory including van der Waals interaction using Grimme's method. We have compared the adsorption energies and structures of 23 possible configurations of the physisorbed molecule. Furthermore, we have simulated STM images for the four most stable configurations using the Tersoff-Hamann approach at different bias voltages.
View Article and Find Full Text PDFChloropentane forms asymmetric ('A') and symmetric ('S') pairs on Si(100)-2×1, differing in the direction of curvature of one pentane tail. Surprisingly this renders the rate of thermal reaction of 'A' fifteen times greater than 'S' in chlorinating room-temperature silicon. Correspondingly, for electron-induced reaction the energy threshold for A is 1 eV less than for S.
View Article and Find Full Text PDF