Publications by authors named "Chiara Nicolini"

Background: This study aims to identify sports interventions for children and adolescents (CaA) with chronic diseases and evaluate their impact on physical, psychological, and social well-being. The findings of this study will contribute to our understanding of the potential benefits of sports interventions for CaA with chronic diseases and inform future interventions to promote their overall health and well-being.

Methods: A systematic review was conducted in eight databases.

View Article and Find Full Text PDF
Article Synopsis
  • Exercise leads to better motor skills due to enhanced neuroplasticity in the brain, particularly influenced by brain-derived neurotrophic factor (BDNF).
  • Assessing BDNF levels in the brain is challenging, prompting researchers to focus on measuring BDNF in blood and its potential role in exercise-related improvements.
  • The variability in blood BDNF measurements, caused by various methodological factors, complicates results and creates inconsistencies in research, highlighting the need for improved measurement techniques.
View Article and Find Full Text PDF

Psoriasis is a chronic skin disease involving not only epidermic damages but also psychological distress for patients and their family caregivers. Little is known about the effects of a psychological support for psoriatic patients on their caregivers' well-being. The goal of the present study was to investigate the indirect effects of the participation in a dynamic focus group reserved for psoriatic patients on their caregivers in terms of quality of life.

View Article and Find Full Text PDF

Exercise is a promising, cost-effective intervention to augment successful aging and neurorehabilitation. Decline of gray and white matter accompanies physiological aging and contributes to motor deficits in older adults. Exercise is believed to reduce atrophy within the motor system and induce neuroplasticity which, in turn, helps preserve motor function during aging and promote re-learning of motor skills, for example after stroke.

View Article and Find Full Text PDF

Aerobic exercise has both neuroprotective and neurorehabilitative benefits. However, the underlying mechanisms are not fully understood and need to be investigated, especially in postmenopausal women, who are at increased risk of age-related disorders such as Alzheimer's disease and stroke. To advance our understanding of the potential neurological benefits of aerobic exercise in aging women, we examined anatomical and functional responses that may differentiate women of varying cardiorespiratory fitness using neuroimaging and neurophysiology.

View Article and Find Full Text PDF

Exercise induces neuroplasticity in descending motor pathways facilitating motor learning, and as such it could be utilized as an intervention in neurorehabilitation, for example when re-learning motor skills after stroke. To date, however, the neurophysiological and molecular mechanisms underlying exercise-induced neuroplasticity remain largely unknown impeding the potential utilization of exercise protocols as 'motor learning boosters' in clinical and non-clinical settings. Here, we assessed corticospinal excitability, intracortical facilitation (ICF) and short-interval intracortical inhibition (SICI) using transcranial magnetic stimulation (TMS) and serum biochemical markers including brain-derived neurotrophic factor (BDNF), total and precursor cathepsin B (tCTSB, proCTSB), uncarboxylated and carboxylated osteocalcin (unOCN, cOCN) and irisin using ELISA.

View Article and Find Full Text PDF

Neurotransmission is highly dependent on the availability of glucose-derived energy, although it is unclear how glucose availability modulates corticospinal and intracortical excitability as assessed via transcranial magnetic stimulation (TMS). In this double-blinded placebo-controlled study, we tested the effect of acute glucose intake on motor-evoked potential (MEP) recruitment curves, short-interval intracortical inhibition (SICI), short-latency afferent inhibition (SAI) and long-latency afferent inhibition (LAI). Eighteen healthy males participated in four sessions.

View Article and Find Full Text PDF

A single bout of aerobic exercise modulates corticospinal excitability, intracortical circuits, and serum biochemical markers such as brain-derived neurotrophic factor (BDNF) and insulin-like growth factor 1 (IGF-1). These effects have important implications for the use of exercise in neurorehabilitation. Here, we aimed to determine whether increases in cardiorespiratory fitness (CRF) induced by 18 sessions of high-intensity interval training (HIIT) over 6 weeks were accompanied by changes in corticospinal excitability, intracortical excitatory and inhibitory circuits, serum biochemical markers and working memory (WM) capacity in sedentary, healthy, young males.

View Article and Find Full Text PDF

Acute aerobic exercise induces short-term neuroplasticity, although it remains unknown whether biological sex and ovarian hormones influence this response. The present study investigated the effects of biological sex and ovarian hormones on short-term neuroplasticity induced by acute aerobic exercise. Young active adults (n = 17 males and n = 17 females; 21 ± 2 years) participated in two sessions in which transcranial magnetic stimulation (TMS) measures were acquired immediately before and after a 20-min bout of moderate-intensity cycling at 65-70% of maximal heart rate.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how handedness (right or left) affects the motor cortex's representation of upper limb muscles, examining structural and functional differences.
  • It uses transcranial magnetic stimulation to map muscle representations in both hemispheres for right- and left-handed individuals.
  • Results show that right-handers have larger and differently located muscle representations in their non-dominant hemisphere compared to left-handers, suggesting handedness does influence motor cortical organization.
View Article and Find Full Text PDF

Background: Autism spectrum disorders (ASDs) are a heterogeneous group of behaviorally defined disorders and are associated with hundreds of rare genetic mutations and several environmental risk factors. Mouse models of specific risk factors have been successful in identifying molecular mechanisms associated with a given factor. However, comparisons among different models to elucidate underlying common pathways or to define clusters of biologically relevant disease subtypes have been complicated by different methodological approaches or different brain regions examined by the labs that developed each model.

View Article and Find Full Text PDF

The serine protease inhibitor neuroserpin regulates the activity of tissue-type plasminogen activator (tPA) in the nervous system. Neuroserpin expression is particularly prominent at late stages of neuronal development in most regions of the central nervous system (CNS), whereas it is restricted to regions related to learning and memory in the adult brain. The physiological expression pattern of neuroserpin, its high degree of colocalization with tPA within the CNS, together with its dysregulation in neuropsychiatric disorders, suggest a role in formation and refinement of synapses.

View Article and Find Full Text PDF

Autism is a lifelong neurodevelopmental disorder characterized by impairments in social communication and interaction and by repetitive patterns of behavior, interests and activities. While autism has a strong genetic component, environmental factors including toxins, pesticides, infection and drugs are known to confer autism susceptibility, likely by inducing epigenetic changes. In particular, exposure to valproic acid (VPA) during pregnancy has been demonstrated to increase the risk of autism in children.

View Article and Find Full Text PDF

Background: The molecular mechanisms underlying autistic behaviors remain to be elucidated. Mutations in genes linked to autism adversely affect molecules regulating dendritic spine formation, function and plasticity, and some increase the mammalian target of rapamycin, mTOR, a regulator of protein synthesis at spines. Here, we investigated whether the Akt/mTOR pathway is disrupted in idiopathic autism and in rats exposed to valproic acid, an animal model exhibiting autistic-like behavior.

View Article and Find Full Text PDF

Actin-based remodelling underlies spine structural changes occurring during synaptic plasticity, the process that constantly reshapes the circuitry of the adult brain in response to external stimuli, leading to learning and memory formation. A positive correlation exists between spine shape and synaptic strength and, consistently, abnormalities in spine number and morphology have been described in a number of neurological disorders. In the present study, we demonstrate that the actin-regulating protein, Eps8, is recruited to the spine head during chemically induced long-term potentiation in culture and that inhibition of its actin-capping activity impairs spine enlargement and plasticity.

View Article and Find Full Text PDF

Defects in synaptic development and plasticity may lead to autism. Brain-derived neurotrophic factor (BDNF) plays a critical role in synaptogenesis and synaptic plasticity. BDNF is synthesized as a precursor, pro-BDNF, which can be processed into either a truncated form or into mature BDNF.

View Article and Find Full Text PDF

Background And Aims: A large body of research has demonstrated that, although specific memory activities can enhance the memory performance of healthy older adults, the extent of the increment is negatively associated with age. Conversely, few studies have examined the case of healthy elderly people not living alone. This study has two mains goals: to understand whether older adults with limited autonomy can benefit from activities devoted to increasing their episodic memory performance, and to test the efficacy of a memory training program based on autobiographical memories, in terms of transfer and maintenance effect.

View Article and Find Full Text PDF

We used a technique that allows us to visualize local and morphological changes of the membrane of more component giant unilamellar vesicles due to high pressure perturbation. Under these conditions, thermally induced processes are largely suppressed, and the bending rigidity and line tension are influenced by pressure-induced changes in lipid molecular packing and shape only. We studied the effect of pressure on the lateral organization and morphology of the model raft system DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine)/sphingomyelin/cholesterol as well as of the fluid mixture POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine)/DLPC (1,2-dilauroyl-sn-glycero-3-phosphocholine) by two-photon excitation fluorescence microscopy.

View Article and Find Full Text PDF

Ras proteins have to be associated with the inner leaflet of the plasma membrane to perform their signaling functions. This membrane targeting and binding is controlled by post-translational covalent attachment of farnesyl and palmitoyl chains to cysteines in the membrane anchor region of the N- and H-Ras isoforms. Two N-Ras lipoproteins were investigated, namely a farnesylated and hexadecylated protein, presenting the natural hydrophobic modifications and a doubly hexadecylated construct, respectively.

View Article and Find Full Text PDF

We report on the effects of temperature and pressure on the structure, conformation and phase behavior of aqueous dispersions of the model lipid "raft" mixture palmitoyloleoylphosphatidylcholine (POPC)/bovine brain sphingomyelin (SM)/cholesterol (Chol) (1:1:1). We investigated interchain interactions, hydrogen bonding, conformational and structural properties as well as phase transformations of this system using Fourier transform-infrared (FT-IR) spectroscopy, small-angle X-ray scattering (SAXS), differential scanning calorimetry (DSC) coupled with pressure perturbation calorimetry (PPC), and Laurdan fluorescence spectroscopy. The IR spectral parameters in combination with the scattering patterns from the SAXS measurements were used to detect structural and conformational transformations upon changes of pressure up to 7-9 kbar and temperature in the range from 1 to about 80 degrees C.

View Article and Find Full Text PDF

In this study, two-photon fluorescence microscopy on giant unilamellar vesicles and tapping-mode atomic force microscopy (AFM) are applied to follow the insertion of a fluorescently (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene, BODIPY) labeled and completely lipidated (hexadecylated and farnesylated) N-Ras protein into heterogeneous lipid bilayer systems. The bilayers consist of the canonical raft mixture 1-palmitoyl-2-oleoylphosphatidylcholine (POPC), sphingomyelin, and cholesterol, which-depending on the concentration of the constituents-separates into liquid-disordered (l(d)), liquid-ordered (l(o)), and solid-ordered (s(o)) phases. The results provide direct evidence that partitioning of N-Ras occurs preferentially into liquid-disordered lipid domains, which is also reflected in a faster kinetics of incorporation into the fluid lipid bilayers.

View Article and Find Full Text PDF

The effects of protein entrapment on the structure and phase behavior of periodically curved lipid mesostructures have been examined by synchrotron small-angle X-ray diffraction and FT-IR spectroscopy. The study was directed towards a better understanding of the effect of confinement in a lipid environment on the stability and unfolding behavior of alpha-chymotrypsin, and, vice versa, the effect of the entrapped protein on the lipid's mesophase structure and temperature- and pressure-dependent phase behavior. We compare the interaction of protein molecules of two different sizes (cytochrome c, 12.

View Article and Find Full Text PDF

A model cosolvent, ethanol, has profound and diversified effects on the amyloidogenic self-assembly of insulin, yielding spectroscopically and morphologically distinguishable forms of beta-aggregates. The alcohol reduces hydrodynamic radii of insulin molecules, decreases enthalpic costs associated with aggregation-prone intermediate states, and accelerates the aggregation itself. Increasing the concentration of the cosolvent promotes curved, amorphous, and finally donut-shaped forms.

View Article and Find Full Text PDF

The lateral membrane organization and phase behavior of the lipid mixture DMPC(di-C(14))/DSPC(di-C(18))/cholesterol (0-33 mol %) with and without an incorporated fluorescence-labeled palmitoyl/farnesyl dual-lipidated peptide, BODIPY-Gly-Cys(Pal)-Met-Gly-Leu-Pro-Cys(Far)-OMe, which represents a membrane recognition model system for Ras proteins, was studied by two-photon excitation fluorescence microscopy. Measurements were performed on giant unilamellar vesicles (GUVs) over a large temperature range, ranging from 30 to 80 degrees C to cover different lipid phase states (all-gel, fluid/gel, liquid-ordered, all-fluid). At temperatures where the fluid-gel coexistence region of the pure binary phospholipid system occurs, large-scale concentration fluctuations appear.

View Article and Find Full Text PDF

The temperature-dependent behavior of a solvated oligopeptide, GVG(VPGVG), is investigated. Spectroscopic measurements, thermodynamic measurements, and molecular dynamics simulations find that this elastinlike octapeptide behaves as a two-state system that undergoes an "inverse temperature" folding transition and reentrant unfolding close to the boiling point of water. A molecular picture of these processes is presented, emphasizing changes in the dynamics of hydrogen bonding at the protein/water interface and peptide backbone librational entropy.

View Article and Find Full Text PDF