Collective cell migration is essential for embryonic development, tissue regeneration and repair, and has been implicated in pathological conditions such as cancer metastasis. It is, in part, directed by external cues that promote front-to-rear polarity in individual cells. However, our understanding of the pathways that underpin the directional movement of cells in response to external cues remains incomplete.
View Article and Find Full Text PDFNeuronal polarity in the developing cortex begins during the early stages of neural progenitor migration toward the cortical plate and culminates with the specification of the axon and dendrites. Here, we demonstrate that the Ran-dependent nucleocytoplasmic transport machinery is essential for the establishment of cortical neuron polarity. We found that Ran-binding protein 1 (RanBP1) regulates axon specification and dendritic arborization in cultured neurons in vitro and radial neural migration in vivo.
View Article and Find Full Text PDFParallel processing of neuronal inputs relies on assembling neural circuits into distinct synaptic-columns and layers. This is orchestrated by matching recognition molecules between afferent growth cones and target areas. Controlling the expression of these molecules during development is crucial but not well understood.
View Article and Find Full Text PDFFetal asphyctic preconditioning, induced by a brief episode of experimental hypoxia-ischemia, offers neuroprotection to a subsequent more severe asphyctic insult at birth. Extensive cell stress and apoptosis are important contributing factors of damage in the asphyctic neonatal brain. Because ceramide acts as a second messenger for multiple apoptotic stimuli, including hypoxia/ischemia, we sought to investigate the possible involvement of the ceramide pathway in endogenous neuroprotection induced by fetal asphyctic preconditioning.
View Article and Find Full Text PDFCeramide, the precursor of all complex sphingolipids, is a potent signaling molecule that mediates key events of cellular pathophysiology. In the nervous system, the sphingolipid metabolism has an important impact. Neurons are polarized cells and their normal functions, such as neuronal connectivity and synaptic transmission, rely on selective trafficking of molecules across plasma membrane.
View Article and Find Full Text PDFSerum amyloid P component (SAP) is a non-fibrillar glycoprotein belonging to the pentraxin family of the innate immune system. SAP is present in plasma, basement membranes, and amyloid deposits. This study demonstrates, for the first time, that the Goodpasture antigen-binding protein (GPBP) binds to human SAP.
View Article and Find Full Text PDFCeramides are lipids that are abundant in brain tissue where they have an important structural role in cellular membranes. Ceramides are also powerful intracellular signalling molecules controlling cell death, growth and differentiation. So far, the ceramide transfer protein (CERT), a shorter splice variant of the Goodpasture antigen-binding protein (GPBP), is the only known protein with the ability to shuttle ceramide from the endoplasmic reticulum to the Golgi apparatus.
View Article and Find Full Text PDFThe Goodpasture antigen-binding protein (GPBP) and its splice variant the ceramide transporter (CERT) are multifunctional proteins that have been found to play important roles in brain development and biology. However, the function of GPBP and CERT is controversial because of their involvement in two apparently unrelated research fields: GPBP was initially isolated as a protein associated with collagen IV in patients with the autoimmune disease Goodpasture syndrome. Subsequently, a splice variant lacking a serine-rich domain of 26 amino acids (GPBPDelta26) was found to mediate the cytosolic transport of ceramide and was therefore (re)named CERT.
View Article and Find Full Text PDFThe Goodpasture antigen-binding protein (GPBP) plays a critical role in brain development. Knockdown of GPBP leads to loss of myelinated tracts in the central nervous system and to extensive apoptosis in the brain during early embryogenesis. GPBP was initially identified as a protein associated with the autoantigen in Goodpasture autoimmune syndrome, where it was shown to be a kinase that regulates type IV collagen organization.
View Article and Find Full Text PDF