We develop various AI models to predict hospitalization on a large (over 110k) cohort of COVID-19 positive-tested US patients, sourced from March 2020 to February 2021. Models range from Random Forest to Neural Network (NN) and Time Convolutional NN, where combination of the data modalities (tabular and time dependent) are performed at different stages (early vs. model fusion).
View Article and Find Full Text PDFBackground: Virtual patient simulators (VPSs) log all users' actions, thereby enabling the creation of a multidimensional representation of students' medical knowledge. This representation can be used to create metrics providing teachers with valuable learning information.
Objective: The aim of this study is to describe the metrics we developed to analyze the clinical diagnostic reasoning of medical students, provide examples of their application, and preliminarily validate these metrics on a class of undergraduate medical students.
Applying state-of-the-art machine learning and natural language processing on approximately one million of teleconsultation records, we developed a triage system, now certified and in use at the largest European telemedicine provider. The system evaluates care alternatives through interactions with patients via a mobile application. Reasoning on an initial set of provided symptoms, the triage application generates AI-powered, personalized questions to better characterize the problem and recommends the most appropriate point of care and time frame for a consultation.
View Article and Find Full Text PDFCD80 is recognized as one of the most potent costimulatory molecules by which immune cells limit cancer progression; however, the current understanding of the regulation of its expression on human tumor cells is limited. The TP53 tumor suppressor plays a critical role in cancer and its significant role in the control of immune responses is emerging. Here, we evaluated the role of TP53 as a regulator of CD80 expression in human cancer cells.
View Article and Find Full Text PDFBackground: Shortage of human resources, increasing educational costs, and the need to keep social distances in response to the COVID-19 worldwide outbreak have prompted the necessity of clinical training methods designed for distance learning. Virtual patient simulators (VPSs) may partially meet these needs. Natural language processing (NLP) and intelligent tutoring systems (ITSs) may further enhance the educational impact of these simulators.
View Article and Find Full Text PDFBackground: One of the most potent costimulatory molecules involved in the recognition and killing of tumor cells is CD80. However, its role and the molecular mechanisms regulating its expression in sporadic colorectal carcinogenesis remain elusive. Here, we provide evidence for CD80 overexpression in human colon epithelial cells derived from preneoplastic mucosa.
View Article and Find Full Text PDFThere are between 6,000 - 7,000 known rare diseases today. Identifying and diagnosing a patient with rare disease is time consuming, cumbersome, cost intensive and requires resources generally available only at large hospital centers. Furthermore, most medical doctors, especially general practitioners, will likely only see one patient with a rare disease if at all.
View Article and Find Full Text PDFvirus type 1 (HSV-1) is a widespread neurotropic pathogen responsible for a range of clinical manifestations. Inflammatory cell infiltrate is a common feature of HSV-1 infections and has been implicated in neurodegeneration. Therefore, viral recognition by innate immune receptors (i.
View Article and Find Full Text PDFBackground: We evaluated the effect of Saccharomyces boulardii CNCM I-745 on intestinal neuromuscular anomalies in an IBS-type mouse model of gastrointestinal motor dysfunctions elicited by Herpes Simplex Virus type 1 (HSV-1) exposure.
Methods: Mice were inoculated intranasally with HSV-1 (102 PFU) or vehicle at time 0 and 4 weeks later by the intragastric (IG) route (108 PFU). Six weeks after IG inoculum, mice were randomly allocated to receive oral gavage with either S.
Significant progress has been made in integrating novel materials into silicon photonic structures in order to extend the functionality of photonic circuits. One of these promising optical materials is BaTiO or barium titanate (BTO) that exhibits a very large Pockels coefficient as required for high-speed light modulators. However, all previous demonstrations show a noticable reduction of the Pockels effect in BTO thin films deposited on silicon substrates compared to BTO bulk crystals.
View Article and Find Full Text PDFCarbon-based electronics is a promising alternative to traditional silicon-based electronics as it could enable faster, smaller and cheaper transistors, interconnects and memory devices. However, the development of carbon-based memory devices has been hampered either by the complex fabrication methods of crystalline carbon allotropes or by poor performance. Here we present an oxygenated amorphous carbon (a-COx) produced by physical vapour deposition that has several properties in common with graphite oxide.
View Article and Find Full Text PDFThe development of silicon photonics could greatly benefit from the linear electro-optical properties, absent in bulk silicon, of ferroelectric oxides, as a novel way to seamlessly connect the electrical and optical domain. Of all oxides, barium titanate exhibits one of the largest linear electro-optical coefficients, which has however not yet been explored for thin films on silicon. Here we report on the electro-optical properties of thin barium titanate films epitaxially grown on silicon substrates.
View Article and Find Full Text PDF