Publications by authors named "Chiara Loeffler"

Background: Genomic data is essential for clinical decision-making in precision oncology. Bioinformatic algorithms are widely used to analyze next-generation sequencing (NGS) data, but they face two major challenges. First, these pipelines are highly complex, involving multiple steps and the integration of various tools.

View Article and Find Full Text PDF
Article Synopsis
  • Homologous recombination deficiency (HRD) is a key biomarker for predicting which cancer patients might respond to PARP inhibitors, but testing for HRD is complex.* -
  • The researchers created a deep learning pipeline using attention-weighted multiple instance learning (attMIL) to predict HRD status from routine histology images, achieving varying accuracy rates across different cancer types.* -
  • Results showed that HRD can be predicted directly from histology slides for multiple cancers, with the model demonstrating promising accuracy, particularly for endometrial, pancreatic, and lung cancers.*
View Article and Find Full Text PDF

In the spectrum of colorectal tumors, microsatellite-stable (MSS) tumors with DNA polymerase ε (POLE) mutations exhibit a hypermutated profile, holding the potential to respond to immunotherapy similarly to their microsatellite-instable (MSI) counterparts. Yet, due to their rarity and the associated testing costs, systematic screening for these mutations is not commonly pursued. Notably, the histopathological phenotype resulting from POLE mutations is theorized to resemble that of MSI.

View Article and Find Full Text PDF

Background: Artificial intelligence (AI) has numerous applications in pathology, supporting diagnosis and prognostication in cancer. However, most AI models are trained on highly selected data, typically one tissue slide per patient. In reality, especially for large surgical resection specimens, dozens of slides can be available for each patient.

View Article and Find Full Text PDF

Deep Learning (DL) can predict biomarkers from cancer histopathology. Several clinically approved applications use this technology. Most approaches, however, predict categorical labels, whereas biomarkers are often continuous measurements.

View Article and Find Full Text PDF

Deep learning applied to whole-slide histopathology images (WSIs) has the potential to enhance precision oncology and alleviate the workload of experts. However, developing these models necessitates large amounts of data with ground truth labels, which can be both time-consuming and expensive to obtain. Pathology reports are typically unstructured or poorly structured texts, and efforts to implement structured reporting templates have been unsuccessful, as these efforts lead to perceived extra workload.

View Article and Find Full Text PDF

Breast cancer prognosis and management for both men and women are reliant upon estrogen receptor alpha (ERα) and progesterone receptor (PR) expression to inform therapy. Previous studies have shown that there are sex-specific binding characteristics of ERα and PR in breast cancer and, counterintuitively, ERα expression is more common in male than female breast cancer. We hypothesized that these differences could have morphological manifestations that are undetectable to human observers but could be elucidated computationally.

View Article and Find Full Text PDF

The histopathological phenotype of tumors reflects the underlying genetic makeup. Deep learning can predict genetic alterations from pathology slides, but it is unclear how well these predictions generalize to external datasets. We performed a systematic study on Deep-Learning-based prediction of genetic alterations from histology, using two large datasets of multiple tumor types.

View Article and Find Full Text PDF

Background: Homologous Recombination Deficiency (HRD) is a pan-cancer predictive biomarker that identifies patients who benefit from therapy with PARP inhibitors (PARPi). However, testing for HRD is highly complex. Here, we investigated whether Deep Learning can predict HRD status solely based on routine Hematoxylin & Eosin (H&E) histology images in ten cancer types.

View Article and Find Full Text PDF

Background: Artificial intelligence (AI) is influencing our society on many levels and has broad implications for the future practice of hematology and oncology. However, for many medical professionals and researchers, it often remains unclear what AI can and cannot do, and what are promising areas for a sensible application of AI in hematology and oncology. Finally, the limits and perils of using AI in oncology are not obvious to many healthcare professionals.

View Article and Find Full Text PDF

Aims: Immune checkpoint inhibitor (ICI) therapy has become a viable treatment strategy in bladder cancer. However, treatment responses vary, and improved biomarkers are needed. Crucially, the characteristics of immune cells remain understudied especially in squamous differentiated bladder cancer (sq-BLCA).

View Article and Find Full Text PDF

Artificial intelligence (AI) can extract visual information from histopathological slides and yield biological insight and clinical biomarkers. Whole slide images are cut into thousands of tiles and classification problems are often weakly-supervised: the ground truth is only known for the slide, not for every single tile. In classical weakly-supervised analysis pipelines, all tiles inherit the slide label while in multiple-instance learning (MIL), only bags of tiles inherit the label.

View Article and Find Full Text PDF

In the last four years, advances in Deep Learning technology have enabled the inference of selected mutational alterations directly from routine histopathology slides. In particular, recent studies have shown that genetic changes in clinically relevant driver genes are reflected in the histological phenotype of solid tumors and can be inferred by analysing routine Haematoxylin and Eosin (H&E) stained tissue sections with Deep Learning. However, these studies mostly focused on selected individual genes in selected tumor types.

View Article and Find Full Text PDF

Classical mathematical models of tumor growth have shaped our understanding of cancer and have broad practical implications for treatment scheduling and dosage. However, even the simplest textbook models have been barely validated in real world-data of human patients. In this study, we fitted a range of differential equation models to tumor volume measurements of patients undergoing chemotherapy or cancer immunotherapy for solid tumors.

View Article and Find Full Text PDF

Background: Fibroblast growth factor receptor (FGFR) inhibitor treatment has become the first clinically approved targeted therapy in bladder cancer. However, it requires previous molecular testing of each patient, which is costly and not ubiquitously available.

Objective: To determine whether an artificial intelligence system is able to predict mutations of the FGFR3 gene directly from routine histology slides of bladder cancer.

View Article and Find Full Text PDF

Molecular alterations in cancer can cause phenotypic changes in tumor cells and their micro-environment. Routine histopathology tissue slides - which are ubiquitously available - can reflect such morphological changes. Here, we show that deep learning can consistently infer a wide range of genetic mutations, molecular tumor subtypes, gene expression signatures and standard pathology biomarkers directly from routine histology.

View Article and Find Full Text PDF