The reshuffling mobility of molecular building blocks in self-assembled micelles is a key determinant of many their interesting properties, from emerging morphologies and surface compartmentalization, to dynamic reconfigurability and stimuli-responsiveness. However, the microscopic details of such complex structural dynamics are typically nontrivial to elucidate, especially in multicomponent assemblies. Here we show a machine-learning approach that allows us to reconstruct the structural and dynamic complexity of mono- and bicomponent surfactant micelles from high-dimensional data extracted from equilibrium molecular dynamics simulations.
View Article and Find Full Text PDFThe self-assembly of nanoparticles driven by small molecules or ions may produce colloidal superlattices with features and properties reminiscent of those of metals or semiconductors. However, to what extent the properties of such supramolecular crystals actually resemble those of atomic materials often remains unclear. Here, we present coarse-grained molecular simulations explicitly demonstrating how a behavior evocative of that of semiconductors may emerge in a colloidal superlattice.
View Article and Find Full Text PDFNanocapsules that collapse in response to guanosine triphosphate (GTP) have the potential as drug carriers for efficiently curing diseases caused by cancer and RNA viruses because GTP is present at high levels in such diseased cells and tissues. However, known GTP-responsive carriers also respond to adenosine triphosphate (ATP), which is abundant in normal cells as well. Here, we report the elaborate reconstitution of microtubule into a nanocapsule that selectively responds to GTP.
View Article and Find Full Text PDFNature designs chemotactic supramolecular structures that can selectively bind specific groups present on surfaces, autonomously scan them moving along density gradients, and react once a critical concentration is encountered. Since such properties are key in many biological functions, these also offer inspirations for designing artificial systems capable of similar bioinspired autonomous behaviors. One approach is to use soft molecular units that self-assemble in an aqueous solution generating nanoparticles (NPs) that display specific chemical groups on their surface, enabling multivalent interactions with complementarily functionalized surfaces.
View Article and Find Full Text PDFUnderstanding the molecular rules behind the dynamics of supramolecular assemblies is fundamentally important for the rational design of responsive assemblies with tunable properties. Herein, we report that the dynamics of temperature-sensitive supramolecular assemblies is not only affected by the dehydration of oligoethylene glycol (OEG) motifs, but also by the thermally-promoted molecular motions. These counteracting features set up a dynamics transition point (DTP) that can be modulated with subtle variations in a small hydrophobic patch on the hydrophilic face of the amphiphilic assembly.
View Article and Find Full Text PDFAlzheimer disease (AD) is the most common cause of dementia, characterized by a progressive decline in cognitive function due to the abnormal aggregation and deposition of Amyloid beta (Aβ) fibrils in the brain of patients. In this context, the molecular mechanisms of protein misfolding and aggregation that are known to induce significant biophysical alterations in cells, including destabilization of plasma membranes, remain partially unclear. Physical interaction between the Aβ assemblies and the membrane leads to the disruption of the cell membrane in multiple ways including, surface carpeting, generation of transmembrane channels and detergent-like membrane dissolution.
View Article and Find Full Text PDF