Pressure-driven coarsening triggers bubble rearrangements in liquid foams. Our experiments show that changing the continuous phase rheology can alter these internal bubble dynamics without influencing the coarsening kinetics. Through bubble tracking, we find that increasing the matrix yield stress permits bubble growth without stress relaxation via neighbor-switching events, promoting more spatially homogeneous rearrangements and decoupling bubble growth from mobility.
View Article and Find Full Text PDFWe investigate the ultraslow structural relaxation of ageing foams with rheologically tunable continuous phases. We probe the bubble dynamics associated with pressure-driven foam coarsening using differential dynamic microscopy, which allows characterising the sample dynamics in reciprocal space with imaging experiments. Similar to other out-of-equilibrium jammed soft systems, these foams exhibit compressed exponential relaxations, with a ballistic-like linear dependency of the relaxation rate on the scattering wavevector.
View Article and Find Full Text PDFFoams coarsen because of pressure differences between bubbles of different sizes. We study the coarsening of quasi-2D foams made from model yield stress fluids: concentrated oil-in-water emulsions. We show that increasing the yield stress of the foamed emulsion continuous phase leads to both slower coarsening and irreversible structural change.
View Article and Find Full Text PDFFoams are unstable jammed materials. They evolve over timescales comparable to their "time of use", which makes the study of their destabilisation mechanisms crucial for applications. In practice, many foams are made from viscoelastic fluids, which are observed to prolong their lifetimes.
View Article and Find Full Text PDFThe elastic properties of a soft matter material can be greatly altered by the presence of solid inclusions whose microscopic properties, such as their size and interactions, can have a dramatic effect. In order to shed light on these effects we use extensive rheology computer simulations to investigate colloidal gels with solid inclusions of different sizes. We show that the elastic properties vary in a highly non-trivial way as a consequence of the interactions between the gel backbone and the inclusions.
View Article and Find Full Text PDF