The present study aimed to i) assess the disintegration of a novel bio-packaging during aerobic composting (2 and 6 % tested concentrations) and evaluate the resulting compost ii) analyse the ecotoxicity of bioplastics residues on earthworms; iii) study the microbial communities during composting and in 'earthworms' gut after their exposure to bioplastic residues; iv) correlate gut microbiota with ecotoxicity analyses; v) evaluate the chemico-physical characterisation of bio-packaging after composting and earthworms' exposure. Both tested concentrations showed disintegration of bio-packaging close to 90 % from the first sampling time, and compost chemical analyses identified its maturity and stability at the end of the process. Ecotoxicological assessments were then conducted on Eisenia fetida regarding fertility, growth, genotoxic damage, and impacts on the gut microbiome.
View Article and Find Full Text PDFIn this paper, the possibility of detecting polymers in plastic mixtures and extruded blends has been investigated. Pyrolysis-gas chromatography/mass spectrometry (py-GC/MS) allows researchers to identify multicomponent mixtures and low amounts of polymers without high spatial resolution, background noise and constituents mix interfering, as with molecular spectrometry techniques normally used for this purpose, such as Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy and differential scanning calorimetry (DSC). In total, 15 solid mixtures of low-density polyethylene (LDPE), polypropylene (PP), polystyrene (PS), polyamide (PA) and polycarbonate (PC) in various combinations have been qualitatively analyzed after choosing their characteristic pyrolysis products and each polymer has been detected in every mix; thus, in extruded blends of high-density polyethylene (HDPE), PP and PS had varying weight percentages of the individual constituents ranging from 10 up to 90.
View Article and Find Full Text PDF