Publications by authors named "Chiara Formica"

Chronic kidney disease (CKD) leads to a gradual loss of kidney function, with fibrosis as pathological endpoint, which is characterized by extracellular matrix (ECM) deposition and remodeling. Traditionally, in vivo models are used to study interstitial fibrosis, through histological characterization of biopsy tissue. However, ethical considerations and the 3Rs (replacement, reduction, and refinement) regulations emphasizes the need for humanized 3D in vitro models.

View Article and Find Full Text PDF

The Hippo pathway is a highly conserved signalling route involved in organ size regulation. The final effectors of this pathway are two transcriptional coactivators, yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (WWTR1 or TAZ). Previously, we showed aberrant activation of the Hippo pathway in autosomal-dominant polycystic kidney disease (ADPKD), suggesting that YAP/TAZ might play a role in disease progression.

View Article and Find Full Text PDF

The major hallmark of Autosomal Dominant Polycystic Kidney Disease (ADPKD) is the formation of many fluid-filled cysts in the kidneys, which ultimately impairs the normal renal structure and function, leading to end-stage renal disease (ESRD). A large body of evidence suggests that injury-repair mechanisms are part of ADPKD progression. Once cysts have been formed, proliferation and fluid secretion contribute to the cyst size increase, which eventually causes stress on the surrounding tissue resulting in local injury and fibrosis.

View Article and Find Full Text PDF

Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic renal disease, caused in the majority of the cases by a mutation in either the PKD1 or the PKD2 gene. ADPKD is characterised by a progressive increase in the number and size of cysts, together with fibrosis and distortion of the renal architecture, over the years. This is accompanied by alterations in a complex network of signalling pathways.

View Article and Find Full Text PDF

Autosomal Dominant Polycystic Kidney Disease is characterised by the development of fluid-filled cysts in the kidneys which lead to end-stage renal disease (ESRD). In the majority of cases, the disease is caused by a mutation in the Pkd1 gene. In a previous study, we demonstrated that renal injury can accelerate cyst formation in Pkd1 knock-out (KO) mice.

View Article and Find Full Text PDF

Mutations in the PKD1 or PKD2 genes are the cause of autosomal dominant polycystic kidney disease (ADPKD). The encoded proteins localize within the cell membrane and primary cilia and are proposed to be involved in mechanotransduction. Therefore, we evaluate shear stress dependent signaling in renal epithelial cells and the relevance for ADPKD.

View Article and Find Full Text PDF

Polycystic kidney disease (PKD) is a major cause of end-stage renal disease. The disease mechanisms are not well understood and the pathogenesis toward renal failure remains elusive. In this study, we present the first RNASeq analysis of a -mutant mouse model in a combined meta-analysis with other published PKD expression profiles.

View Article and Find Full Text PDF

Patients with therapy-related acute myeloid leukemia (t-AML) and myelodysplastic syndromes (t-MDS) have poor survival and high non-relapse mortality (NRM) after allogeneic stem cell transplantation. This retrospective study assessed the transplant outcomes of 29 consecutive patients with t-AML (83%) or t-MDS (17%) treated with allogeneic transplantation. The median age of patients was 51 years.

View Article and Find Full Text PDF