The long diffusion length of charge carriers in the CHNHPbI perovskite is one of the most relevant properties for explaining the high photovoltaic efficiency of perovskite solar cells. As a possible mechanism for the large diffusion length of electrons and holes, several authors suggested a reduced coulomb attraction of the carriers due to the formation of polarons. Here we performed continuous wave far-infrared photoinduced absorption (PIA) experiments on CHNHPbI; spectral changes are associated with local deformation of the lattice around the photogenerated long-lived charges, a typical signature of photoinduced polarons.
View Article and Find Full Text PDFSilk fibroin (SF), a protein core fibre from the silkworm Bombyx mori, has huge potential to become a sustainable, biocompatible, and biodegradable material platform that can pave the way towards the replacement of plastic in the fabrication of bio-derived materials for a variety of technological and biomedical applications. SF has remarkable mechanical flexibility, controllable biodegradability, biocompatibility and is capable of drug/doping inclusion, stabilization and release. However, the dielectric properties of SF limit its potential as a direct bioelectronic interface in biomedical devices intended to control the bioelectrical activity of the cell for regenerative purposes.
View Article and Find Full Text PDFThermo switchable magnetic hydrogels undoubtedly have a great potential for medical applications since they can behave as smart carriers able to transport bioactive molecules to a chosen part of the body and release them on demand via magneto-thermal activation. We report on the ability to modify the lower critical solution temperature (LCST) of poly(N-isopropylacrylamide) (PNIPAM) on demand from 32 °C to LCST ≥ 37 °C. This was achieved by the absorption of controlled amounts of magnetite nanoparticles on the polymer chains.
View Article and Find Full Text PDFWe demonstrate field effect transistors based on organic semiconductor molecules dispersed in a self-organized polystyrene (PS) latex bead matrix. An aqueous colloidal composite made of PS and tetrahexylsexithiophene (H4T6) is deposited with a micropipet into the channel of a bottom-contact field effect transistor. The beads self-organize into a network whose characteristic distances are governed by their packing.
View Article and Find Full Text PDFThe importance of pure-phase titanium oxide materials as catalysts, sensors, and photonic band-gap materials has been growing steadily. Recently, more attention has been focused on nanostructured titanium oxide showing controlled and periodic porosity on a nanometric scale. The nanocrystal size control of porous nanostructured titanium oxide in an anatase form is a crucial step for the organic template method.
View Article and Find Full Text PDFJ Colloid Interface Sci
July 2004
In this paper we propose a simple model for the formation of monodisperse polymer colloids, which provides a convenient set of synthetic parameters for given bead diameters. We provide experimental data in support of this model.
View Article and Find Full Text PDF