Publications by authors named "Chiara Di Fazio"

Swiftly halting ongoing motor actions is essential to react to unforeseen and potentially perilous circumstances. However, the neural bases subtending the complex interplay between emotions and motor control have been scarcely investigated. Here, we used an emotional stop signal task (SST) to investigate whether specific neural circuits engaged by action suppression are differently modulated by emotional signals with respect to neutral ones.

View Article and Find Full Text PDF

Fear extinction is a phenomenon that involves a gradual reduction in conditioned fear responses through repeated exposure to fear-inducing cues. Functional brain connectivity assessments, such as functional magnetic resonance imaging (fMRI), provide valuable insights into how brain regions communicate during these processes. Stress, a ubiquitous aspect of life, influences fear learning and extinction by changing the activity of the amygdala, prefrontal cortex, and hippocampus, leading to enhanced fear responses and/or impaired extinction.

View Article and Find Full Text PDF

Learning to recognize and respond to potential threats is crucial for survival. Pavlovian threat conditioning represents a key paradigm for investigating the neurobiological mechanisms of fear learning. In this review, we address the role of specific neuropharmacological adjuvants that act on neurochemical synaptic transmission, as well as on brain plasticity processes implicated in fear memory.

View Article and Find Full Text PDF

Emotions are able to impact our ability to control our behaviors. However, it is not clear whether emotions play a detrimental or an advantageous effect on action control and whether the valence of the emotional stimuli differently affects such motor abilities. One way to measure reactive inhibitory control is the stop-signal task (SST), which estimates the ability to cancel outright a response to the presentation of a stop signal by means of the stop signal reaction times (SSRT).

View Article and Find Full Text PDF

Since the dawn of cognitive neuroscience, emotions have been recognized to impact on several executive processes, such as action inhibition. However, the complex interplay between emotional stimuli and action control is not yet fully understood. One way to measure inhibitory control is the stop-signal task (SST), which estimates the ability to cancel outright an action to the presentation of a stop signal by means of the stop-signal reaction times (SSRTs).

View Article and Find Full Text PDF