Here we compare the standard European benchmark of wood treatment by molecularly dissolved copper amine (Cu-amine), also referred to as aqueous copper amine (ACA), against two nanoenabled formulations: copper(II)oxide nanoparticles (CuO NPs) in an acrylic paint to concentrate Cu as a barrier on the wood surface, and a suspension of micronized basic copper carbonate (CuCO·Cu(OH)) for wood pressure treatment. After characterizing the properties of the (nano)materials and their formulations, we assessed their effects in vitro against three fungal species: Coniophora puteana, Gloeophyllum trabeum, and Trametes versicolor, finding them to be mediated only partially by ionic transformation. To assess the use phase, we quantify both release rate and form.
View Article and Find Full Text PDFBackground: We investigated the particles released due to abrasion of wood surfaces pressure-treated with micronized copper azole (MCA) wood preservative and we gathered preliminary data on its in vitro cytotoxicity for lung cells. The data were compared with particles released after abrasion of untreated, water (0% MCA)-pressure-treated, chromated copper (CC)-pressure-treated wood, and varnished wood. Size, morphology, and composition of the released particles were analyzed.
View Article and Find Full Text PDFThe North American wood decking market mostly relies on easily treatable Southern yellow pine (SYP), which is being impregnated with micronized copper (MC) wood preservatives since 2006. These formulations are composed of copper (Cu) carbonate particles (CuCO3·Cu(OH)2), with sizes ranging from 1 nm to 250 μm, according to manufacturers. MC-treated SYP wood is protected against decay by solubilized Cu2+ ions and unreacted CuCO3·Cu(OH)2 particles that successively release Cu2+ ions (reservoir effect).
View Article and Find Full Text PDFRecently introduced micronized copper (MC) formulations, consisting of a nanosized fraction of basic copper (Cu) carbonate (CuCO3·Cu(OH)2) nanoparticles (NPs), were introduced to the market for wood protection. Cu NPs may presumably be more effective against wood-destroying fungi than bulk or ionic Cu compounds. In particular, Cu- tolerant wood-destroying fungi may not recognize NPs, which may penetrate into fungal cell walls and membranes and exert their impact.
View Article and Find Full Text PDFLow-density wood fiber insulation boards are traditionally manufactured in a wet process using a closed water circuit (process water). The water of these industrial processes contains natural phenolic extractives, aside from small amounts of admixtures (e.g.
View Article and Find Full Text PDFCopper (Cu) is an essential biocide for wood protection, but fails to protect wood against Cu-tolerant wood-destroying fungi. Recently Cu particles (size range: 1 nm-25 μm) were introduced to the wood preservation market. The new generation of preservatives with Cu-based nanoparticles (Cu-based NPs) is reputedly more efficient against wood-destroying fungi than conventional formulations.
View Article and Find Full Text PDF