Staphylococcus aureus is an opportunistic pathogen that is considered a global health threat. This microorganism can adapt to hostile conditions by regulating membrane lipid composition in response to external stress factors such as changes in pH and ionic strength. S.
View Article and Find Full Text PDFMuch research has been carried out to remove emerging contaminants using diverse materials. Furthermore, studies related to pollutant degradation have increased over the past decade. Mechanochemical degradation can successfully decompose molecules that are persistent in the environment.
View Article and Find Full Text PDFmembranes contain carotenoids formed during the biosynthesis of staphyloxanthin. These carotenoids are considered virulence factors due to their activity as scavengers of reactive oxygen species and as inhibitors of antimicrobial peptides. Here, we show that the growth of under oxygen-restricting conditions downregulates carotenoid biosynthesis and modifies phospholipid content in biofilms and planktonic cells analyzed using LC-MS.
View Article and Find Full Text PDFAmphibians are one of the most remarkable sources of unique natural products. Biogenic amines, peptides, bufodienolides, alkaloids, and volatile organic compounds have been characterized in different species. The superfamily Dendrobatoidea represents one of the most enigmatic cases of study in chemical ecology because their skin secretome is composed by a complex mixture (i.
View Article and Find Full Text PDFSustainable management of non-edible agricultural residues of cashew nut production is a concern in Colombia. Therefore, this study aimed to study the fatty acid content of a pyrolytic liquid obtained from cashew nut shells (CNSs) from the Vichada region in Colombia. Transesterification of pyrolytic liquid was conducted to obtain biodiesel at the micro-scale as the first approach for this valorization route.
View Article and Find Full Text PDFsynthesizes and releases volatile organic compounds (VOCs), small molecules that allow them to carry out interaction processes. These lipid-dependent yeasts belong to the human skin mycobiota and are related to dermatological diseases. However, knowledge about VOC production and its function is lacking.
View Article and Find Full Text PDFCashew nut production generates large amounts of cashew apple as residue. In Colombia, cashew cultivation is increasing together with the concerns on residue management. The objective of this study was to provide the first chemical, physical and thermal decomposition characterization of cashew apple from Colombian varieties harvested in Vichada, Colombia.
View Article and Find Full Text PDFTuberculosis (Edinb)
December 2022
Natural carotenoids are secondary metabolites that exhibit antioxidant, anti-inflammatory, and anti-cancer properties. These types of compounds are highly demanded by pharmaceutical, cosmetic, nutraceutical, and food industries, leading to the search for new natural sources of carotenoids. In recent years, the production of carotenoids from bacteria has become of great interest for industrial applications.
View Article and Find Full Text PDFTuberculosis (Edinb)
January 2022
Multidrug-resistant tuberculosis (isoniazid/rifampin[RIF]-resistant TB) ravages developing countries. Fitness is critical in clinical outcomes. Previous studies on RIF-resistant TB (RR-TB) showed competitive fitness gains and losses, with rpoB-S450L as the most isolated/fit mutation.
View Article and Find Full Text PDFBackground: Poison frogs are known for the outstanding diversity of alkaloid-based chemical defences with promising therapeutic applications. However, current knowledge about chemical defences in Dendrobatoidea superfamily has two sources of bias. First, cryptic, brown-colored species have been neglected in comparison to those conspicuously colored, and second, there has been little interest in characterizing metabolites other than alkaloids mediating defensive functions.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
August 2021
Staphyloxanthin (STX) is a saccharolipid derived from a carotenoid in Staphylococcus aureus involved in oxidative-stress tolerance and antimicrobial peptide resistance. STX influences the biophysical properties of the bacterial membrane and has been associated to the formation of lipid domains in the regulation of methicillin-resistance. In this work, a targeted metabolomics and biophysical characterization study was carried out to investigate the biosynthetic pathways of carotenoids, and their impact on the membrane biophysical properties.
View Article and Find Full Text PDFBackground: Microorganisms synthesize and release a large diversity of small molecules like volatile compounds, which allow them to relate and interact with their environment. Volatile organic compounds (VOCs) are carbon-based compounds with low molecular weight and generally, high vapor pressure; because of their nature, they spread easily in the environment. Little is known about the role of VOCs in the interaction processes, and less is known about VOCs produced by Malassezia, a genus of yeasts that belongs to the human skin mycobiota.
View Article and Find Full Text PDFWe engineered a machine learning approach, MSHub, to enable auto-deconvolution of gas chromatography-mass spectrometry (GC-MS) data. We then designed workflows to enable the community to store, process, share, annotate, compare and perform molecular networking of GC-MS data within the Global Natural Product Social (GNPS) Molecular Networking analysis platform. MSHub/GNPS performs auto-deconvolution of compound fragmentation patterns via unsupervised non-negative matrix factorization and quantifies the reproducibility of fragmentation patterns across samples.
View Article and Find Full Text PDFIn this study, we describe the optimization of a Hydrophilic Interaction Liquid Chromatography coupled to mass spectrometry (HILIC-MS) method for the evaluation of 14 metabolites related to the de novo synthesis of pyrimidines (dnSP) while using multivariate analysis, which is the metabolic pathway for pyrimidine nucleotide production. A multivariate design was used to set the conditions of the column temperature, flow of the mobile phase, additive concentration, gradient rate, and pH of the mobile phase in order to attain higher peak resolution and ionization efficiency in shorter analysis times. The optimization process was carried out while using factorial fractional designs, Box-Behnken design and central composite design while using two zwitterionic columns, ZIC-p-HILIC and ZIC-HILIC, polymeric, and silica-based columns, respectively.
View Article and Find Full Text PDFis part of the human skin microbiota. Its volatile organic compounds (VOCs) possibly contribute to the characteristic odour in humans, as well as to microbiota interaction. The aim of this study was to investigate how the lipid composition of the liquid medium influences the production of VOCs.
View Article and Find Full Text PDFTomato crops suffer attacks of various pathogens that cause large production losses. Late blight caused by is a devastating disease in tomatoes because of its difficultly to control. Here, we applied metabolomics based on liquid chromatography⁻mass spectrometry (LC-MS) and metabolic profiling by matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) in combination with multivariate data analysis in the early detection of late blight on asymptomatic tomato plants and to discriminate infection times of 4, 12, 24, 36, 48, 60, 72 and 96 h after inoculation (hpi).
View Article and Find Full Text PDFBackground: Previous studies have demonstrated the role of volatile organic compounds (VOCs) produced by skin microbiota in the attraction of mosquitoes to humans. Recently, behavioral experiments confirmed the importance of VOCs released by skin microbiota in the attraction of Rhodnius prolixus (Hemiptera: Triatominae), a vector of Chagas disease.
Methods/findings: In this study, we screened for VOCs released in vitro by bacteria isolated from human facial skin that were able to elicit behavioral responses in R.
The low molecular mass (LMM) extract of Cichorium intybus var. silvestre (red chicory) has been shown to inhibit virulence-linked properties of oral pathogens including Streptococcus mutans, Actinomyces naeslundii and Prevotella intermedia. In the present study HPLC-DAD-ESI/MS(2) was used to investigate the compounds contained in this extract for their anti-virulence activity.
View Article and Find Full Text PDFPhenolic acids and flavonoids extracted from several types of Cichorium intybus var. silvestre salads ("Chioggia", "Treviso", "Treviso tardivo", and "Verona") were characterised by high-performance liquid chromatography-electrospray ionisation/mass spectrometry. Among the 64 compounds detected, several hydroxycinnamic acid derivatives including 8 mono- and dicaffeoylquinic acids, 3 tartaric acid derivatives, 31 flavonol and 2 flavone glycosides, as well as 10 anthocyanins were characterised based on UV spectra and MS(n) fragmentation patterns.
View Article and Find Full Text PDFChicory is a widely consumed vegetable and a source of phenolic compounds. Phenolic acid and flavonoid derivatives were identified in Cichorium endivia var. crispum and var.
View Article and Find Full Text PDFRecently it has been demonstrated that nanoelectrospray (nES) in conjunction with macro-ion mobility spectrometry (macroIMS) and condensed particle detection can be used to size various types of nanoparticles, including large biomolecules (proteins, DNA, etc.), having electrophoretic mobility diameters ranging from 3 nm to well over 100 nm. The technique is extremely sensitive; however, it lacks specificity as a result of the detector used.
View Article and Find Full Text PDFJ Pharm Biomed Anal
September 2008
The hydroxycinnamic acid derivatives found in Chicorium endivia var. crispum and var. latifolium polyphenolic extracts were detected and characterized by high-performance liquid chromatography (HPLC) combined with photodiode array detector (DAD) and electrospray ionization-tandem mass spectrometry (ESI-MS/MS).
View Article and Find Full Text PDFHuman beta2-microglobulin (beta2-m) is a small amyloidogenic protein responsible for dialysis-related amyloidosis, which represents a severe complication of long-term hemodialysis. A therapeutic approach for this amyloidosis could be based on the stabilization of beta2-m through the binding to a small molecule, to possibly inhibit protein misfolding and amyloid fibril formation. The search of a strong ligand of this protein is extremely challenging: by using CE in affinity and refolding experiments we study the effect that previously selected sulfonated molecules have on the equilibrium between the native form and an ensemble of conformers populating the slow phase of beta2-m folding.
View Article and Find Full Text PDFBeta2-microglobulin (beta2-m) is a small amyloidogenic protein normally present on the surface of most nucleated cells and responsible for dialysis-related amyloidosis, which represents a severe complication of long-term hemodialysis. A therapeutic approach for this amyloidosis could be based on the stabilization of beta2-m through the binding to a small molecule, and consequent inhibition of protein misfolding and amyloid fibril formation. A few compounds have been described to weakly bind beta2-m, including the drug suramin.
View Article and Find Full Text PDF