Publications by authors named "Chiara Brullo"

G-protein-coupled receptors (GPCRs) represent a family of druggable targets when treating several diseases and continue to be a leading part of the drug discovery process. Trace amine-associated receptors (TAARs) are GPCRs involved in many physiological functions with TAAR1 having important roles within the central nervous system (CNS). By using homology modeling methods, the responsiveness of TAAR1 to endogenous and synthetic ligands has been explored.

View Article and Find Full Text PDF

Phosphodiesterase 4 (PDE4) enzymes catalyze cyclic adenosine monophosphate (cAMP) hydrolysis and are involved in a variety of physiological processes, including brain function, monocyte and macrophage activation, and neutrophil infiltration. Among different PDE4 isoforms, Phosphodiesterases 4D (PDE4Ds) play a fundamental role in cognitive, learning and memory consolidation processes and cancer development. Selective PDE4D inhibitors (PDE4Dis) could represent an innovative and valid therapeutic strategy for the treatment of various neurodegenerative diseases, such as Alzheimer's, Parkinson's, Huntington's, and Lou Gehrig's diseases, but also for stroke, traumatic brain and spinal cord injury, mild cognitive impairment, and all demyelinating diseases such as multiple sclerosis.

View Article and Find Full Text PDF

In the last years, 5-pyrazolyl ureas and 5-aminopyrazoles have been investigated for their antiangiogenetic properties and their potential interaction with the ubiquitous Ca binding protein Calreticulin. Based on the structure of the active compounds I and GeGe-3, novel 5-arylamino pyrazoles 2 and 3 were synthesized through a stepwise procedure. In MTT assays, all the new derivatives proved to be non-cytotoxic against eight different tumor cell lines, normal fibroblasts, and endothelial cells.

View Article and Find Full Text PDF

Cutaneous melanoma is the most dangerous and deadly form of human skin malignancy. Despite its rarity, it accounts for a staggering 80% of deaths attributed to cutaneous cancers overall. Moreover, its final stages often exhibit resistance to drug treatments, resulting in unfavorable outcomes.

View Article and Find Full Text PDF

Sirtuins (SIRTs) are classified as class III histone deacetylases (HDACs), a family of enzymes that catalyze the removal of acetyl groups from the ε-N-acetyl lysine residues of histone proteins, thus counteracting the activity performed by histone acetyltransferares (HATs). Based on their involvement in different biological pathways, ranging from transcription to metabolism and genome stability, SIRT dysregulation was investigated in many diseases, such as cancer, neurodegenerative disorders, diabetes, and cardiovascular and autoimmune diseases. The elucidation of a consistent number of SIRT-ligand complexes helped to steer the identification of novel and more selective modulators.

View Article and Find Full Text PDF

To further extend the structure-activity relationships (SARs) of 5-aminopyrazoles (5APs) and identify novel compounds able to interfere with inflammation, oxidative stress, and tumorigenesis, 5APs have been designed and prepared. Some chemical modifications have been inserted on cathecol function or in aminopyrazole central core; in detail: (i) smaller, bigger, and more lipophilic substituents were introduced in and positions of catechol portion (5APs ); (ii) a methyl group was inserted on C3 of the pyrazole scaffold (5APs ); (iii) a more flexible alkyl chain was inserted on N1 position (5APs ); (iv) the acylhydrazonic linker was moved from position 4 to position 3 of the pyrazole scaffold (5APs ). All new derivatives have been tested for radical scavenging (DPPH assay), anti-aggregating/antioxidant (in human platelets) and cell growth inhibitory activity (MTT assay) properties.

View Article and Find Full Text PDF

In a screen of over 200 novel pyrazole compounds, ethyl 1-(2-hydroxypentyl)-5-(3-(3-(trifluoromethyl) phenyl)ureido)-1-pyrazole-4-carboxylate (named GeGe-3) has emerged as a potential anticancer compound. GeGe-3 displays potent anti-angiogenic properties through the presumptive targeting of the protein kinase DMPK1 and the Ca2-binding protein calreticulin. We further explored the anticancer potential of GeGe-3 on a range of established cancer cell lines, including PC3 (prostate adenocarcinoma), SKMEL-28 (cutaneous melanoma), SKOV-3 (ovarian adenocarcinoma), Hep-G2 (hepatocellular carcinoma), MDA-MB231, SKBR3, MCF7 (breast adenocarcinoma), A549 (lung carcinoma), and HeLa (cervix epithelioid carcinoma).

View Article and Find Full Text PDF

Spinal cord injury (SCI) is a life-changing event that severely impacts the patient's quality of life. Modulating neuroinflammation, which exacerbates the primary injury, and stimulating neuro-regenerative repair mechanisms are key strategies to improve functional recovery. Cyclic adenosine monophosphate (cAMP) is a second messenger crucially involved in both processes.

View Article and Find Full Text PDF

Aminopyrazoles represent interesting structures in medicinal chemistry, and several derivatives showed biological activity in different therapeutic areas. Previously reported 5-aminopyrazolyl acylhydrazones and amides showed relevant antioxidant and anti-inflammatory activities. To further extend the structure-activity relationships in this class of derivatives, a novel series of pyrazolyl acylhydrazones and amides was designed and prepared through a divergent approach.

View Article and Find Full Text PDF

To meet the urgent need for new antibacterial molecules, a small library of pyrazolyl thioureas (PTUs) was designed, synthesized and tested against difficult-to-treat human pathogens. The prepared derivatives are characterized by a carboxyethyl functionality on C4 and different hydroxyalkyl chains on N1. Compounds - were first evaluated against a large panel of Gram-positive and Gram-negative pathogens.

View Article and Find Full Text PDF

Aiming at developing a dermal formulation against melanoma, the synthesized imidazo-pyrazoles 2-phenyl-2,3-dihydro-1H-imidazo[1,2-b]pyrazole-7-carboxylic acid (3-methoxy-4-phenoxy-benzylidene)-hydrazide () and 2-phenyl-2,3-dihydro-1H-imidazo[1,2-b]pyrazole-7-carboxylic acid (4-benzyloxy-3-methoxy-benzylidene)-hydrazide () were screened on patient-isolated melanoma cells (MEOV NT) and on Vemurafenib (PLX4032)-resistant (MEOV PLX-R) ones. Since on MEOV PLX-R cells was 1.4-fold more effective than PLX, a hydrogel formulation containing (R4HG-4I) was prepared in parallel with an empty R4-based hydrogel (R4HG) using a synthesized antibacterial resin (R4) as gelling agent.

View Article and Find Full Text PDF

Neuroblastoma (NB) is a childhood cancer, commonly treated with drugs, such as etoposide (ETO), whose efficacy is limited by the onset of resistance. Here, aiming at identifying new treatments for chemo-resistant NB, the effects of two synthesized imidazo-pyrazoles (IMPs) ( and ) were investigated on ETO-sensitive (HTLA-230) and ETO-resistant (HTLA-ER) NB cells, detecting as the more promising compound, that demonstrated IC values lower than those of ETO on HTLA ER. Therefore, to further improve the activity of , we developed -loaded palmitic acid (PA) and polystyrene-based (P5) cationic nanoparticles (P5PA-4I NPs) with high drug loading (21%) and encapsulation efficiency (97%), by a single oil-in-water emulsification technique.

View Article and Find Full Text PDF

The promising anti-angiogenetic properties of previously synthesized pyrazolyl ureas provided the rationale for the synthesis of novel 5-aminopyrazoles 2-5, differently decorated on the pyrazole nucleus. All the derivatives were tested by MTT assays and proved to be non-cytotoxic against eight different tumor cell lines and normal fibroblasts. An EdU proliferation assay was carried out on human foreskin fibroblasts and VEGF stimulated human umbilical vein endothelial cells which confirmed the absence of cytotoxicity of the compounds on human cells up to 20 μM concentration.

View Article and Find Full Text PDF

The indole heterocycle represents one of the most important scaffolds in medicinal chemistry and is shared among a number of drugs clinically used in different therapeutic areas. Due to its varied biological activities, high unique chemical properties and significant pharmacological behaviors, indole derivatives have drawn considerable interest in the last decade as antitumor agents active against different types of cancers. The research of novel antiproliferative drugs endowed with enhanced efficacy and reduced toxicity led to the approval by U.

View Article and Find Full Text PDF

In previous studies, we synthesized different imidazo-pyrazoles 1 and 2 with interesting anticancer, anti-angiogenic and anti-inflammatory activities. To further extend the structure-activity relationships of imidazo-pyrazole scaffold and to identify novel antiproliferative/anti-inflammatory agents potentially active with multi-target mechanisms, a library of compounds 3-5 has been designed and synthesized. The chemical modifications characterizing the novel derivatives include: i) decoration of the catechol ring with groups with different electronic, steric and lipophilic properties (compounds 3); ii) insertion of a methyl group on C-6 of imidazo-pyrazole scaffold (compounds 4); iii) shift of the acylhydrazonic substituent from position 7 to 6 of the imidazo-pyrazole substructure (compounds 5).

View Article and Find Full Text PDF

Inhibition of phosphodiesterase 4D (PDE4D) enzymes has been investigated as therapeutic strategy to treat memory problems in Alzheimer's disease (AD). Although PDE4D inhibitors are effective in enhancing memory processes in rodents and humans, severe side effects may hamper their clinical use. PDE4D enzymes comprise different isoforms, which, when targeted specifically, can increase treatment efficacy and safety.

View Article and Find Full Text PDF

Sirtuin isoform 2 (SIRT2) is one of the seven sirtuin isoforms present in humans, being classified as class III histone deacetylases (HDACs). Based on the high sequence similarity among SIRTs, the identification of isoform selective modulators represents a challenging task, especially for the high conservation observed in the catalytic site. Efforts in rationalizing selectivity based on key residues belonging to the SIRT2 enzyme were accompanied in 2015 by the publication of the first X-ray crystallographic structure of the potent and selective SIRT2 inhibitor SirReal2.

View Article and Find Full Text PDF

The impact of innovative technologies on the target discovery has been employed here to characterize the interactome of STIRUR 41, a promising 3-fluoro-phenyl-5-pyrazolyl-urea derivative endowed with anti-cancer activity, on neuroblastoma-related cells. A drug affinity responsive target stability-based proteomic platform has been optimized to elucidate the molecular mechanism at the basis of STIRUR 41 action, together with immunoblotting analysis and in silico molecular docking. Ubiquitin Specific Protease 7 (USP-7), one of the deubiquitinating enzymes which protect substrate proteins from proteasomal degradation, has been identified as the most affine STIRUR 41 target.

View Article and Find Full Text PDF
Article Synopsis
  • A pyrazole nucleus is a versatile compound structure with significant therapeutic potential, attracting interest from both academia and industry.
  • In the past decade, many studies have been published on various pyrazole derivatives, but there's a lack of overview specifically on aminopyrazole compounds (3-, 4-, and 5-aminopyrazoles) and their biological properties.
  • This review aims to bridge that gap by examining aminopyrazole-based compounds, focusing on their therapeutic applications, particularly in anticancer and anti-inflammatory treatments, supported by data from several scientific databases.
View Article and Find Full Text PDF

Neuroblastoma (NB) is a severe form of tumor occurring mainly in young children and originating from nerve cells found in the abdomen or next to the spine. NB needs more effective and safer treatments, as the chance of survival against the aggressive form of this disease are very small. Moreover, when current treatments are successful, they are often responsible for unpleasant health problems which compromise the future and life of surviving children.

View Article and Find Full Text PDF

Multi-drug resistant bacterial strains (MDR) have become an increasing challenge to our health system, resulting in multiple classical antibiotics being clinically inactive today. As the de-novo development of effective antibiotics is a very costly and time-consuming process, alternative strategies such as the screening of natural and synthetic compound libraries is a simple approach towards finding new lead compounds. We thus report on the antimicrobial evaluation of a small collection of fourteen drug-like compounds featuring indazoles, pyrazoles and pyrazolines as key heterocyclic moieties whose synthesis was achieved in continuous flow mode.

View Article and Find Full Text PDF

In the effort to obtain multitarget compound interfering with inflammation, oxidative stress, and tumorigenesis, we synthesized a small library of pyrazole compounds, selecting , , and as the most noteworthy being IC against platelet ROS production induced by thrombin of about 10 µM. The in vitro antioxidant potential of the three molecules was evaluated, and since they show a remarkable antioxidative activity, their effect on several parameter indicative of oxidative status and on the efficiency of the aerobic metabolism was tested. The three molecules strongly inhibit superoxide anion production, lipid peroxidation, NADPH oxidase activity and almost restore the oxidative phosphorylation efficiency in thrombin-stimulated platelet, demonstrating a protective effect against oxidative stress.

View Article and Find Full Text PDF

During the last years, we developed a large library of new selective phosphodiesterase 4D inhibitors, maintaining the catechol portion of the well-known PDE4 inhibitor Rolipram, featuring different substitutions in place of the lactam group of this reference compound. Based on the X-ray analysis of PDE4 inhibitors (PDE4Is) previously synthesized by us and of naphthyridine- and naphthyridinone-containing derivatives exhibiting PDE4 inhibitory ability described in the literature, we designed and synthesized new compounds 1-3. All of them were screened in silico as putative PDE4Is, via molecular docking studies to exploit structural variation at the catechol group to gain further contacts especially with the flat aromatic residues (Phe506 and Phe538) of enzyme.

View Article and Find Full Text PDF

Here, to develop new topical antibacterial formulations to treat staphylococcal infections, two pyrazoles ( and ) previously reported as antibacterial agents, especially against staphylococci, were formulated as hydrogels (R1-HG-3c and R1HG-4b) using a cationic polystyrene-based resin (R1) and here synthetized and characterized as gelling agents. Thanks to the high hydrophilicity, high-level porosity, and excellent swelling capabilities of R1, R1HG-3c and R1HG-4b were achieved with an equilibrium degree of swelling (EDS) of 765% (R1HG-3c) and 675% (R1HG-4b) and equilibrium water content (EWC) of 88% and 87%, respectively. The chemical structure of soaked and dried gels was investigated by PCA-assisted attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy, while their morphology was investigated by optical microscopy.

View Article and Find Full Text PDF